2. Nucleotides

Part XXXIV¹)

Synthesis of Modified Oligomeric 2'-5'A Analogues: Potential Antiviral Agents

by Piet Herdewijn^a), Klaus Ruf^b), and Wolfgang Pfleiderer^b)*

^a) Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroedersstraat 10, B-3000 Leuven

^b) Fakultät für Chemie der Universität Konstanz, Universitätsstrasse 10, D-7750 Konstanz

(3.IX.90)

A series of new 2'-5'-oligonucleotide trimers carrying a 9-(2',3'-anhydro- β -D-ribofuranosyl)-(59), 9-(3'-deoxy- β -D-glycero-pent-3-enofuranosyl)-(63), 9-(3'-azido-3'-deoxy- β -D-xylofuranosyl)-(62), and 9-(3'-halo-3'-deoxy- β -D-xylofuranosyl)adenine (60 and 61) moiety at the 2'-terminal end have been synthesized via the phosphotriester method. The properly protected, modified monomeric building blocks (6, 9, 16, 19, 27, 33, 36, 37, and 43) were obtained, in general, by a sequence of reactions, introducing the protecting groups into the right positions. Their condensations with the intermediary dimeric 2'-terminal phosphodiesters 48 and 49 led to the fully protected 2'-5'-trimers 50-58 which were deblocked to form the free 2'-5'-trimers 59-63. Easy elimination of HBr on deprotection did not allow to form the trimeric (3'-bromo-3'-deoxy- β -D-xylofuranosyl)adenine analogue but only 63 carrying an unsaturated sugar moiety instead. The newly synthesized compounds have been characterized by UV and NMR spectra as well as by elemental analysis.

1. Introduction. - More detailed studies on the 'antiviral activity' of interferon revealed that this protein functions as an inducer to enhance antiviral resistance in virally infected cells by a cascade of reactions. This resistance is typically characterized by induced activity of several enzymes, a protein kinase, a $(2'-5')pppA(pA)_{a}$ synthetase, a specific exoribonuclease-2'-phosphodiesterase, and an endoribonuclease, RNase L [2-4]. The biological function of the interferon-induced synthetase is the oligomerization of ATP to various (2'-5')pppA(pA)_n oligomers, of which the trimer showed so far the highest activity in subsequent activation of RNase L. Chemically synthesized (2'-5')ApApA ('core'), which is also formed naturally in mouse L-cells following treatment with interferon [5], can mimic the antimitogenic effect of interferon and seems to play a separate role in the inhibition of DNA synthesis and cellular reactions. Since the 2'-phosphodiesterase activity is also triggered 4-6 fold in interferon-treated cells, enhanced cleavage of the naturally occurring 2'-5'-oligoadenylate molecules is noticed. This fact led to several attempts to synthesize chemically modified structural analogues lacking enzymatic degradation but still activating the latent endoribonuclease L [6-18]. Since the presence of a 3'-O-methyl group at the 2'-terminal end of (2'-5)ApApA induced a higher biological index, obviously due to greater enzymatic stability [6], we decided to continue our efforts [17] [18] in synthesizing some additional 2'-5'A₃ analogues in which the

¹) Part XXXIII: [1].

2'-terminal adenosine moiety has been replaced by a 3'-substituted 9-(β -D-xylofuranosyl)adenine or the 9-(2',3-anhydro- β -D-ribofuranosyl)adenine (= 2',3'-anhydroadenosine) residue. The introduced 3'-substituents are located in the β (up)-configuration, and they vary in electronegativity and bulkiness.

It can be seen from the coupling constants J(1',2') of the starting nucleosides 9- $(\beta$ -D-xylofuranosyl)adenine (2.0 Hz) [19], its 3'-fluoro- (2.3 Hz), 3'-methoxy- (2.7 Hz), 3'-chloro- (4.0 Hz), 3'-bromo- (4.5 Hz), 3'-iodo- (5.5 Hz), and 3'-azido-3'-deoxy derivatives (6.0 Hz) that there is already a conformational change in the puckering of the sugar moiety which may also affect the fine structure of the anticipated oligonucleotides and their interactions with other biomolecules.

2. Syntheses. – The provision for a successful synthesis of oligonucleotides is the preparation of appropriately protected monomeric building blocks. Starting from adenosine the 9-(3'-chloro-3'-deoxy- β -D-xylofuranosyl)adenine (1) [20] [21] and its 3'-bromo (10) [21], 3'-iodo (20) [21], 3'-fluoro [22], and 3'-azido [22] analogue as well as the 2',3'-anhydroadenosine [20] [23] have been synthesized by known or slightly modified procedures.

bz = benzoyl; MeOTr = monomethoxytrityl; tbds = (tert-butyl)dimethylsilyl; ac = acetyl; npe = 2-(4-nitro-phenyl)ethyl; npeoc = [2-(4-nitrophenyl)ethoxy]carbonyl.

The protection of the amino group of 1 and 10, of the 3'-fluoro-3'-deoxy and 3'-azido-3'-deoxy analogue, and of 2',3'-anhydroadenosine by a benzoyl (bz) group was carried out by the transient-protection method [24] giving good yields of 2, 12, 31, 34, and 37, respectively. In the case of 9-(3'-iodo-3'-deoxy- β -D-xylofuranosyl)adenine (20), the usual workup after benzoylation could not be applied, since desilylation and removal of one benzoyl group with ammonia led to 2',3'-epoxide formation (\rightarrow 37) due to the high reactivity of the I-substituent and easy intramolecular nucleophilic displacement. Therefore, the N⁶,N⁶-dibenzoyl derivative 21 was isolated and then hydrolysed under very mild conditions (MeOH in presence of imidazole) to the N⁶-monobenzoyl compound 23. Selective protection of the 5'-OH groups was achieved by monomethoxytritylation in the usual manner (MeOTrCl) forming 3, 13, 22, 24, 32, 35, and 38, respectively. These compounds were then silylated at the 2'-OH group using (*tert*-butyl)dimethylsilyl chloride (*t*-Bu)Me₂SiCl to give either the corresponding silyl ether 4, 14, and 25, which were subsequently detritylated to 6, 16, and 24, respectively, or to give directly in an one-pot reaction the 5'-OH deprotected derivatives 33 and 36.

The interesting features of the [2-(4-nitrophenyl)ethoxy]carbonyl residue (npeoc) [25] as a superior amino-protecting group encouraged us to synthesize from 11 in an analogous sequence of reactions the 9-(3'-iodo-3'-deoxy- β -D-xylofuranosyl)-N⁶-([2-(4-nitrophenyl)ethoxy]carbonyl)adenine (28) and its 5'-O-monomethoxytrityl-(29) as well as the corresponding 2'-O-(tert-butyl)dimethylsilyl derivative 30.

The lability of 3'-iodo-3'-deoxy derivative 20 under basic reaction conditions (\rightarrow 37) prompted us to test the stability of the protected 3'-halo-3'-deoxy building blocks 4, 14, and 25 under deprotection conditions to see, whether the appropriate protected oligonucleotides can finally be converted into their free forms without structural modifications. On treatment with conc. ammonia at room temperature, 4, 14, and 25 were debenzoy-lated to 5, 15, and 26, respectively, and detritylation of 4, 14, and 25 with 80% AcOH gave 6, 16, and 27, respectively without affecting the halo atoms. On treatment with 0.5M DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) in pyridine 4 was still stable, but the 3'-bromo-(14) and 3'-iodo analogue (25) showed *trans*-1,2-elimination to form N⁶-benzoyl-9-{2'-O-[(*tert*-butyl)dimethylsilyl]-3'-deoxy-5'-O-(monomethoxytrityl)- β -D-glycero-pent-3'-enofuranosyl}adenine (40) and its desilylated analogue 41 in 80 and 15% and 49 and 32% yield, respectively. Bu₄NF in tetrahydrofuran (THF) caused the expected desilylation and was accompanied by simultaneous intramolecular displacement to form the 2',3'-anhydro-N⁶-benzoyl-5'-O-(monomethoxytrityl)adenine (38) in high yields.

The unsaturated nucleoside **40** reacted with conc. ammonia under debenzoylation to **42**, which was also obtained on DBU treatment of **30** in two simultaneous elimination processes. Finally, **40** was detritylated in the usual manner with 80% AcOH to give **43** in 74% yield. Also, the anhydro derivative **38** was debenzoylated to **17** with conc. ammonia.

These results indicated an obvious change in the blocking-group strategy, since the desilylation from the 2'-O-position is accompanied by a side reaction leading to concomitant oxirane formation, when the adjacent halo atom is Cl, Br, or I. We tried, therefore, to introduce an acid-labile protecting group into the 2'-OH position by converting 2 and 12 first into their 5'-O-(*tert*-butyl)dimethylsilyl derivatives 7 and 16, respectively. The following monomethoxytritylation turned out to be rather difficult. After 5 days at 50°, only a 66% yield of the N⁶-benzoyl-9-[5'-O-[(*tert*-butyl)dimethylsilyl]-3'-chloro-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (8) was obtained, while 20% of 7

could still be recovered. Removal of the (*tert*-butyl)dimethylsilyl group from **8** proceeded without difficulties with Bu_4NF in THF to give **9** in 97% yield. The same reaction sequence, however, was not applicable to the 3'-bromo analogue **17**, since treatment with MeOTrCl in pyridine for 7 days at 50° led to a mixture of the expected N⁶-benzoyl-9-{5'-O-[(*tert*-butyl)dimethylsilyl]-3'-bromo-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl}adenine and the corresponding 2',5'-bis-O-monomethoxytrityl derivative **18**, which could not be separated cleanly. This mixture reacted in 80% AcOH at 4° for 12 h

CH2CH2CN

46 H

⊛¦⊝

with partial detritylation and allowed the isolation of 70% of 19. Due to the difference in reactivity of the 2'-O- and 5'-O-monomethoxytrityl group, 19 was then synthesized more straightforwardly from 12 by bis-tritylation (\rightarrow 18) followed by selective removal of the 5'-O-MeOTr group (\rightarrow 19 in 71% yield). It should also be mentioned that all attempts to protect N⁶-benzoyl-9-(3'-iodo-3'-deoxy- β -D-xylofuranosyl)adenine (23) in a similar manner have so far failed.

The synthesis of the various anticipated fully protected 2'-5' trimers **50–58** was achieved by routine condensations of the triethylammonium dinucleoside diphosphates **48** or **49** with the 5'-OH free nucleosides **6**, **9**, **16**, **19**, **27**, **33**, **36**, and **37**, respectively, under activation by 2,4,6-triisopropylbenzenesulfonyl chloride and *N*-methylimidazole as condensing agents in pyridine. The use of different blocking groups for the phosphate functions and especially the very bulky 2'-O-monomethoxytrityl residue did not alter the yields very much and the products were isolated after column chromatography in moderate to good (55–77%) yield. The starting dimer **49** was described earlier [18], whereas **48** had to be synthesized by a series of reactions from N⁶-benzoyl-3'-O-[(*tert*-butyl)-dimethylsilyl]-5'-O-(monomethoxytrityl)adenosine [26] [27] first by conversion into the 2'-(2,5-dichlorophenyl, 2-cyanoethyl)phosphotriester **44**. Treatment either with Et₃N in pyridine or with 2% TsOH in CH₂Cl₂/MeOH led to the two components **45** and **46**, respectively, which were then condensed to the fully protected dimer **47** in 81% yield. Elimination of the 2-cyanoethyl group at the 2'-terminal phosphotriester function was performed in the usual manner to give **48** in 80% isolated yield.

The crucial point of all the synthetic efforts was then encountered during the deprotection steps to form the free 2'-5' trimers **59**-**63**. Deblocking of **56** and **57** to the free trimers **61** and **62** in 86 and 80% yield, respectively, proceeded as expected in four successive steps, first by elimination of the phosphate-protecting groups with DBU in pyridine, second by cleavage of the silyl groups with Bu₄NF, third by debenzoylation with conc. ammonia, and finally by AcOH-catalyzed detritylation (see *Table*), and purification by *DEAE-Sephadex* chromatography. Subsequent paper chromatography yielded, after lyophilisation, the pure ammonium salts **61** and **62** as checked by HPLC on a reverse-phase column (*RP 18*, 0.1M a NH₄OAc/MeCN 95:5). Analogously, the deprotection of **58** proceeded smoothly to **59** in 78% yield, after incubation with conc. ammonia for 3 days at r.t., followed by Bu₄NF treatment in THF, final detritylation with 80% AcOH, and purification.

Starting material	Conditions ^a)	Resulting trime
50	1, 3, 2, 4	59
51	3, 2, 4	60
52	1, 3, 2, 4	59/63
53	3, 2, 4	59
54	3, 2, 4	
55	3, 2, 4	59/63
56	1, 2, 3, 4	61
57	1, 2, 3, 4	62
58	3, 2, 4	59

Fable. Deprotection	of 2'-5'	Trimers
---------------------	----------	---------

More problems were encountered, as expected, on deprotection of the halo trimers **50–55** (see *Table*). Compound **51** still worked fine on successive treatment with conc. ammonia, Bu_4NF in THF, and 80% AcOH, giving a 87% yield of **60** and thus proving that the monomethoxytrityl group for 2'-OH protection was the correct choice. On the contrary, **50** gave, after the deprotection sequence DBU in pyridine, conc. ammonia, Bu_4NF in THF, and 80% AcOH a trimer which was identical with **59** carrying the 2',3'-anhydroadenosine moiety at the 2'-terminal end. Of the Br-containing trimers **52–54**, only **53** reacted uniformly to give again **59**, whereas from **52** the two trimers **59** and **63** were isolated. Unfortunately, the deprotection of **54** led to an intractable mixture which could not be separated into pure components. Finally, the I-containing trimer **55** led again to the mixture **59/63**.

3. Spectral Data. – All new compounds were characterized in the usual manner by elemental analyses and UV and ¹H-NMR spectra. Comparisons of the UV spectra indicate that the long-wavelength absorption of the adenine chromophor at 259 nm is shifted bathochromically by 20 nm on N^6 -benzoylation and by *ca*. 10 nm on introduction of the [2-(4-nitrophenyl)ethoxy]carbonyl group. In the fully protected trimers **50–58**, the presence of three adenine moieties is reflected in the extinctions which are highly additive revealing no or very little base-stacking and a more linear conformation.

In the complex 'H-NMR spectra, the chemical shifts of the anomeric protons of the monomeric building blocks show characteristic deviations which are due to special structural features. Thus, the presence of a 2'-O-(*tert*-butyl)dimethylsilyl group and the simultaneous absence of the 5'-O-(monomethoxytrityl) group, like in 6, 16, 27, and 36, causes an upfield shift of 0.3–0.4 ppm from the normal anomeric-proton region (5.9–6.1 ppm) and a substantial increase of J(1',2'). Furthermore, introduction of a 2'-O-(monomethoxytrityl) group (8, 9, 18, 19) is associated with a down-field shift of H-C(1') which is, as expected, also observed with the unsaturated nucleosides 40–43. The fully deprotected 2'-5' trimers 59–63 show three distinct 'H-NMR signals (D₂O) for the anomeric protons, which are difficult to assign to the various nucleoside moieties due to an interfering influence of the substituents in the 2'-terminal unit. It should be mentioned that the assignments of H-C(2) and H-C(8) of all new compounds have not been corroborated by further experiments and are, therefore, tentative.

We thank the Alexander von Humboldt Foundation for a research fellowship, the Fonds der chemischen Industrie for financial support, and Mrs. M. Bischler for the measurements of the UV spectral data.

Experimental Part

General. See [18]. HPLC: SP-8000-B chromatograph, Spectra Physics; column: Lichrosorb RP-18 and Lichrophor RP-18 (Merck). OD measured at 260 nm.

1. 9-(3'-Chloro-3'-deoxy-β-D-xylofuranosyl)adenine (1) [20] [21]. A suspension of 3.34 g (12.5 mmol) of dry adenosine and 8.25 g (50 mmol) of freshly distilled 2-acetoxyisobutyryl chlorid in dry MeCN (125 ml) was heated to 80° for 1 h. After cooling to r.t., the precipitate (adenine) was filtered off and the filtrate evaporated. The residue was dissolved in AcOEt (150 ml) and washed subsequently with 10% NaHCO₃ soln. (3 × 50 ml) and H₂O (2 × 50 ml). The org. layer was dried (Na₂SO₄) and evaporated. The solid foam was treated with 1% HCl/MeOH (200 ml) at r.t. for 7 days. The soln. was then neutralized by addition of Ag₂CO₃ (8.5 g) and stirring for 4 h, filtered, and evaporated and the residue chromatographed (silica gel (24 × 6 cm), CHCl₃/MeOH 95:5). The main fraction was collected after 700 ml of eluant and gave, on coevaporation and recrystallization from acetone/AcOEt 2.0 g (56%)

of 1. Colorless crystals. M.p. 193° ([21]: 194°). UV (MeOH): 259 (4.18). ¹H-NMR ((D_6)DMSO): 8.25 (*s*, H–C(8)); 8.14 (*s*, H–C(2)); 7.37 (br. *s*, NH₂); 6.37 (*d*, OH–C(2')); 5.86 (*d*, H–C(1')); 5.33 (*t*, OH–C(5')); 4.81 (*m*, H–C(2')); 4.53 (*m*, H–C(3')); 4.40 (*m*, H–C(4')); 3.74 (*m*, 2 H–C(5')).

2. N⁶-Benzoyl-9-(3'-chloro-3'-deoxy- β -D-xylofuranosyl)adenine (2). A mixture of 0.45 g (1.56 mmol) of 1 and 1 ml (7.8 mmol) of Me₃SiCl in pyridine (8 ml) was stirred for 15 min at r.t. After addition of 0.9 ml (7.8 mmol) of benzoyl chloride, the mixture was further stirred for 3 h at r.t. and then cooled to 0°. H₂O (1.6 ml) was added and after 10 min, conc. NH₃ (3.1 ml). The mixture was stirred for another 30 min. After dilution with H₂O (23 ml) and extraction with AcOEt (3 × 15 ml), the combined org. layer was evaporated, coevaporated with toluene, and purified by column chromatography (silica gel, CHCl₃/MeOH 95:5). Recrystallization from AcOEt gave 0.425 g (70%). Colorless crystals. M.p. 149°. UV (MeOH): 279 (4.28). ¹H-NMR ((D₆)DMSO): 8.77 (*s*, H–C(8)); 8.59 (*s*, H–C(2)); 8.04 (*m*, 2 H, bz); 7.59 (*m*, 3 H, bz); 6.49 (*d*, OH–C(2')); 6.03 (*d*, *J* = 3.7, H–C(1')); 5.16 (*t*, OH–C(5')); 4.86 (*m*, H–C(2')); 4.58 (*m*, H–C(3')); 4.47 (*m*, H–C(4')); 3.83–3.70 (*m*, 2 H–C(5')). Anal. calc. for C₁₇H₁₆ClN₅O₄ (389.8): C 52.38, H 4.74, N 17.96; found: C 52.76, H 4.37, N 18.15.

3. N⁶-Benzoyl-9-[3'-chloro-3'-deoxy-5'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (3). A mixture of 0.7 g (1.8 mmol) of **2** and 0.67 g (2.16 mmol) of MeOTrCl in dry pyridine (10 ml) was stirred for 48 h at r.t. MeOH (3 ml) and CHCl₃ (20 ml) were added, and the mixture was washed with phosphate buffer pH 7 (2 × 50 ml). The org. layer was dried, filtered, evaporated, coevaporated with toluene, and purified by column chromatography (silica gel, CHCl₃/CH₂Cl₂ 1:1, then CHCl₃/MeOH 98:2). The residue of the main fraction was precipitated from CHCl₃/hexane: 0.96 g (81%). Colorless solid. UV (MeOH): 279 (4.39). ¹H-NMR (CHCl₃): 8.98 (*s*, NH); 8.77 (*s*, H-C(8)); 8.19 (*s*, H-C(2)); 7.98, 7.17–7.59 (*m*, 19 arom. H); 6.80 (*d*, 2 H, *o* to MeO); 6.09 (*d*, *J* = 1.2, H-C(1')); 4.88 (*m*, OH-C(2'), H-C(2')); 4.76 (*m*, H-C(4')); 4.43 (*m*, H-C(3')); 3.77 (*s*, MeO); 3.65–3.40 (*m*, 2 H-C(5')). Anal. calc. for C₃₇H₃₂ClN₅O₅ (662.2): C 67.11, H 4.87, N 10.57; found: C 66.62, H 4.66, N 10.62.

4. N⁶-Benzoyl-9-{2'-O-[(tert-butyl)dimethylsilyl]-3'-chloro-3'-deoxy-5'-O-(monomethoxytrityl)- β -D-xylo-furanosyl}adenine (4). A mixture of 3.0 g (4.5 mmol) of 3, 0.92 g (13.5 mmol) of imidazole, and 1.02 g (6.75 mmol) of (*t*-Bu)Me₂SiCl in dry pyridine (20 ml) was stirred at r.t. for 40 h. After addition of CHCl₃ (100 ml) and washing with H₂O (2×50 ml), the org. layer was dried, evaporated, and coevaporated with toluene. Purification by column chromatography (silical gel, CH₂Cl₂/CHCl₃ 2:1) and reprecipitation from CHCl₃/hexane gave 3.72 g (89%) o 4. Amorphous solid. UV (MeOH): 279 (4.36). ¹H-NMR (CDCl₃): 9.12 (br. *s*, NH); 8.77 (*s*, H–C(8)); 8.20 (*s*, H–C(2)); 8.02 (2 H, bz); 7.21–7.60 (*m*, 17 arom. H); 6.84 (*d*, 2 H, *o* to MeO); 6.12 (*d*, H–C(1')); 4.73 (*m*, H–C(2'), H–C(4')); 4.13 (*m*, H–C(3')); 3.79 (*s*, MeO); 3.73 (*dd*, 1 H–C(5')); 3.42 (*dd*, 1 H–C(5')); 0.92 (*s*, *t*-Bu); 0.19 (*s*, MeSi). Anal. calc. for C₄₃H₄₆ClN₅O₅Si (776.4): C 66.52, H 5.97, N 9.02; found: C 66.56, H 6.15, N 9.21.

5. $9-\{2'-O-[(\text{tert}-Butyl) dimethylsilyl]-3'-chloro-3'-deoxy-5'-O-(monomethoxytrityl)-\beta-D-xylofuranosyl\}-adenine (5). A soln. of 0.562 g (0.72 mmol) of 4 in conc. NH₃ (10 ml) and dioxane (8 ml) was stirred at r.t. for 48 h. After evaporation, the residue in CH₂Cl₂/CHCl₃ 1:1 was chromatographed (silica gel (38×2 cm), CH₂Cl₂/CHCl₃ 1:1 (500 ml), CHCl₃ (300 ml), and CHCl₃/MeOH 50:1 (500 ml)). The last fraction gave a colorless foam which was precipitated from little CHCl₃/hexane (50 ml) under stirring. The amorphous solid was dried under high vacuum at 40°: 0.46 g (95%). UV (MeOH): 233 (4.23), 258 (4.20). ¹H-NMR (CDCl₃): 8.31 ($ *s*, H–C(8)); 8.01 (*s*, H–C(2)); 7.50, 7.31 (2*m*, 12 arom. H); 6.83 (*d*, 2 H,*o*to MeO); 6.03 (*d*,*J*= 1.0, H–C(1')); 5.90 (br.*s*, NH₂); 4.69 (*m*, H–C(2'), H–C(4')); 4.11 (*m*, H–C(3')); 3.79 (*s*, MeO); 3.70 (*dd*, 1 H–C(5')); 3.39 (*dd*, 1 H–C(5')); 0.90 (*s*,*t*-Bu); 0.16 (*s*, CH₃); 0.12 (*s*, CH₃). Anal. calc. for C₃₆H₄₂ClN₅O₄Si (672.3): C 64,31, H 6.30, N 10.42; found: C 64.17, H 6.69, N 10.11.

6. N⁶-Benzoyl-9- {2'-O-[(tert-butyl) dimethylsilyl]-3'-chloro-3'-deoxy-β-D-xylofuranosyl } adenine (6). A soln. of 0.233 g (0.3 mmol) of **5** in 80% aq. AcOH (10 ml) was kept at r.t. for 16 h. The mixture was partitioned between CHCl₃ (100 ml) and H₂O (100 ml). The org. layer was dried, evaporated, and coevaporated with toluene and the residue purified by column chromatography (silica gel, CHCl₃): 0.139 g (92%). Amorphous solid. UV (MeOH): 279 (4.35). ¹H-NMR (CDCl₃): 9.01 (s, NH); 8.82 (s, H–C(8)); 8.09 (s, H–C(2)); 8.01 (2 H, bz); 7.49–7.61 (m, 3 H, bz); 5.78 (d, J = 5.8, H–C(1')); 5.01–5.11 (m, OH–C(5'), H–C(2')); 4.54 (m, H–C(4')); 4.41 (m, H–C(3')); 4.03 (m, 2 H–C(5')); 0.79 (s, t-Bu); 0.02 (s, MeSi); -0.36 (s, MeSi). Anal. calc. for C₂₃H₃₀ClN₅O₄Si (504.1): C 54.80, H 6.00, N 13.89; found: C 54.30, H 5.97, N 13.75.

7. N⁶-Benzoyl-9- {5'-O-[(tert-butyl)dimethylsilyl]-3'-chloro-3'-deoxy- β -D-xylofuranosyl}adenine (7). A mixture of 0.9 g (2.31 mmol) of **2** and 0.435 g (2.88 mmol) of (t-Bu)Me₂SiCl in dry pyridine (5 ml) was stirred at r.t. for 3 h. After addition of MeOH (5 ml) the mixture was diluted with CHCl₃ (50 ml) and washed with H₂O (2 × 50 ml). The org. layer was dried, filtered, evaporated, and purified by column chromatography (silica gel, CHCl₃/MeOH 99:1, then CHCl₃/MeOH 98:2): 0.93 g (80%). Amorphous solid. UV (MeOH): 279 (4.13). ¹H-NMR (CDCl₃): 9.08 (*s*, NH); 8.69 (*s*, H–C(8)); 8.31 (*s*, H–C(2)); 7.99–7.96 (*m*, 2 H, bz); 7.61–7.46 (*m*, 3 H, bz); 6.05 (*d*, J = 3.7, H–C(1')); 5.66 (*d*, OH–C(2')); 4.88 (*m*, H–C(2')); 4.60 (*m*, H–C(4')); 4.50 (*m*, H–C(3')); 4,04–3.91 (*m*, 2 H–C(5')); 0.79 (*s*, *t*-Bu); 0.03 (*s*, Me₂Si). Anal. calc. for C₂₃H₃₀ClN₅O₄Si (504.1): C 54.80, H 6.00, N 13.89; found: C 54.34, H 6.10, N 13.64.

8. N⁶-Benzoyl-9-{5'-O-f (tert-butyl)dimethylsilyl]-3'-chloro-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylo-furanosyl}adenine (8). A soln. of 0.66 g (1.31 mmol) of 7 and 0.97 g (3.14 mmol) of MeOTrCl in pyridine (8 ml) was heated for 5 days at 50°. The mixture was cooled, MeOH (5 ml) added, the mixture evaporated, coevaporated with toluene (3 × 10 ml), diluted with CHCl₃ (50 ml), and washed with H₂O (3 × 50 ml), the org. layer dried and evaporated, and the residue purified, by column chromatography (silica gel, CH₂Cl₂/CHCl₃ 2:1, CHCl₃, and CHCl₃/MeOH 99:1): 0.67 g (66%). Amorphous solid. An anal. pure sample was obtained after prep. TLC (CHCl₃/MeOH 99:1). UV (MeOH): 278 (4.33). ¹H-NMR (CDCl₃): 8.96 (br. *s*, NH); 8.90 (*s*, H–C(8)); 8.31 (*s*, H–C(2)); 8.02–7.99 (*m*, 2 H, bz); 7.63–7.17 (*m*, 15 H, bz, MeOT*r*); 6.72 (*d*, 2 H, *o* to MeO); 6.66 (*d*, H–C(1')); 4.43 (*m*, H–C(4'), H–C(3')); 3.91–3.77 (*m*, H–C(5')); 3.72 (*s*, MeO); 3.15 (*m*, H–C(2')); 0.83 (*s*, *t*-Bu); 0.01 (Me₂Si). Anal. calc. for C₄₃H₄₆ClN₅O₅Si (776.4): C 66.52, H 5.97, N 9.02; found: C 66.03, H 6.01, N 8.87.

9. N⁶-Benzoyl-9-[3'-chloro-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (9). A soln. of 0.23 g (0.3 mmol) of **8** in 0.5M Bu₄NF (20 ml) in THF was kept for 30 min at r.t. and was then evaporated. The residue was diluted with CHCl₃ (50 ml) and washed with H₂O (4 × 50 ml). The org. layer was dried, evaporated, and purified by column chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 99:1): 0.175 g (88%). UV (MeOH): 279 (4.34). ¹H-NMR (CDCl₃): 8.97 (s, NH); 8.86 (s, H–C(8)); 8.22 (s, H–C(2)); 8.02–7.99 (m, 2 H, bz); 7.61–7.48 (m, 3 H, bz); 7.41–7.12 (m, 12 H, MeOTr); 6.68 (d, 2 H, o to MeO); 6.57 (d, J = 2.1, H–C(1')); 4.57–4.51 (m, H–C(4'), H–C(3')); 3.94 (dd, H–C(5')); 3.80 (dd, 1 H–C(5')); 3.71 (s, MeO); 3.42 (m, H–C(2')); 2.23 (t, OH–C(5')). Anal. calc. for C₃₇H₃₂ClN₅O₅ (662.2): C 67.11, H 4.87, N 10.57; found: C 66.61, H 5.19, N 10.29.

10. 9-(3'-Bromo-3'-deoxy- β -D-xylofuranosyl)adenine (10). As described in Exper. 1, with 6.675 g (25 mmol) of adenosine, 15.7 g (75 mmol) of freshly distilled 2-acetoxyisobutyryl bromide, and MeCN (75 ml), at r.t. for 40 min; workup (no filtration) with AcOEt (250 ml), sat. NaHCO₃ soln. (3 × 125 ml), and H₂O (2 × 100 ml); HCl/MeOH treatment at r.t. for 8 days and Ag₂CO₃ (12.5 g) treatment for 4 h; after chromatography (silica gel (30 × 6 cm), CHCl₃/MeOH 95:5 (1.5 l)), the first fraction gave, on recrystallization from MeOH, 1.31 g (14%) of 9-(2'-O-acetyl-3'-bromo-3'-deoxy- β -D-xylofuranosyl)adenine (11). M.p. 207° ([21]: 206–207°).

The second fraction gave, on recrystallization, 1.91 g (23%) of **10**. Colorless crystals. M.p. 134° ([21]: 133°). UV (MeOH): 259 (4.17). ¹H-NMR ((D₆)DMSO): 8.29 (*s*, H–C(8)); 8.15 (*s*, H–C(2)); 7.37 (br. *s*, NH₂); 6.37 (*d*, OH–C(2')); 5.83 (*d*, J = 4.3, H–C(1')); 5.40 (*t*, OH–C(5')); 4.90 (*m*, H–C(2')); 4.55 (*m*, H–C(3')); 4.32 (*m*, H–C(4')); 3.75 (*m*, 2 H–C(5')).

From the last fraction were isolated 2.1 g (25%) of 9-(2'-bromo-2'-deoxy- β -D-arabinofuranosyl)adenine. M.p. 215° ([20]: 215–216°).

11. N⁶-*Benzoyl-9-(3'-bromo-3'-deoxy-β*-D-*xylofuranosyl)adenine* (12). As described in *Exper. 2*, with 0.46 g (1.4 mmol) of 10. The crude product was purified by prep. TLC (silica gel ($40 \times 20 \times 0.2$ cm), CHCl₃/MeOH 9:1; elution of the main band (R_f 0.35) with CHCl₃/MeOH 4:1) and recrystallization from AcOEt (20 ml): 0.48 g (75%) of colorless crystals. M.p. 165°. UV (MeOH): 230 (sh, 4.12), 260 (sh, 4.06), 279 (4.28). ¹H-NMR ((D₆)DMSO): 11.15 (br. *s*, NH); 8.76 (*s*, H–C(8)); 8.62 (*s*, H–C(2)); 8.04 (*m*, 2 H, bz); 7.67–7.51 (*m*, 3 H, bz); 6.44 (*d*, OH–C(2')); 6.02 (*d*, *J* = 3.9, H–C(1')); 5.14 (*t*, OH–C(5')); 4.99 (*m*, H–C(2')); 4.59 (*m*, H–C(3')); 4.39 (*m*, H–C(4')); 3.85–3.70 (*m*, 2 H–C(5')).

12. N⁶-Benzoyl-9-[3'-bromo-3'-deoxy-5'-O-(monomethoxytrityl)-β-D-xylofuranosyl]adenine (13). Dry pyridine (10 ml) and 0.978 g (2.25 mmol) of **12** were coevaporated to remove any moisture. Treatment, as described in *Exper. 3*, with pyridine (10 ml) and 0.832 g (2.7 mmol) of MeOTrCl; workup with CHCl₃ (50 ml; no MeOH) and phosphate buffer (2 × 50 ml); chromatography (silica gel (27 × 3 cm), CH₂Cl₂ (2 l), CHCl₃ (0.7 l), and CHCl₃/MeOH 50:1) and drying under high vacuum gave 1.275 g (80%) of amorphous foam. UV (MeOH): 279 (4.38). ¹H-NMR (CDCl₃): 9.03 (br. *s*, NH); 8.74 (*s*, H–C(8)); 8.24 (*s*, H–C(2)); 7.98 (*m*, 2 H, bz); 7.61–7.22 (*m*, 15 H, bz MeOTr); 6.79 (*d*, 2 H, *o* to MeO); 6.09 (*d*, H–C(1')); 5.36 (br. *s*, OH–C(2')); 4.97 (*m*, H–C(2')); 4.66 (*m*, H–C(4')); 4.41 (*m*, H–C(3')); 3.76 (*s*, MeO); 3.76–3.37 (2dd, 2 H–C(5')). Anal. calc. for C₃₇H₃₂BrN₅O₅ (706.6): C 62.89, H 4.50, N 9.91; found: C 69.39, H 4.50, N 9.73.

13. N⁶-Benzoyl-9-{3'-bromo-2'-O-[(tert-butyl) dimethylsilyl]-3'-deoxy-5'-O-(monomethoxytrityl)- β -D-xylofuranosyl}adenine (14). As described in Exper. 4, with pyridine (9 ml), 1.3 g (1.84 mmol) of 13, 0.376 g (5.52 mmol) of imidazole, and 0.416 g (2.76 mmol) of (t-Bu)Me₂SiCl, 2 days. MeOH (5 ml) was added and evaporated. Coevaporation with toluene (2 × 20 ml), partition between CHCl₃ (30 ml) and phosphate buffer pH 7 (2 × 30 ml) drying (Na₂SO₄) of the org. layer, evaporation, and chromatography (silica gel ($31 \times 4 \text{ cm}$), CH₂Cl₂/CHCl₃ 2:1), gave, after reprecipitation from little CHCl₃ hexane and drying under high vacuum at 40°, 1.231 g (81%) of amorphous powder. UV (MeOH): 279 (4.35). ¹H-NMR (CDCl₃): 8.77 (*s*, H–C(8)); 8.25 (*s*, H–C(2)); 8.03 (*m*, 2 H, bz); 7.62–7.28 (*m*, 15 H, bz MeOTr); 6.84 (*d*, 2 H, *o* to MeO); 6.10 (*d*, H–C(1')); 4.86 (*m*, H–C(2')); 4.61 (*m*, H–C(4')); 4.10 (*m*, H–C(3')); 3.79 (*s*, MeO); 3.75–3.68 (*dd*, 1 H–C(5')); 3.40–3.35 (*dd*, 1 H–C(5')); 0.92 (*s*, *t*-Bu); 0.18 (*s*, MeSi); 0.14 (*s*, MeSi). Anal. calc. for C₄₃H₄₆BrN₅O₅Si (820.9): C 62.92, H 5.65, N 8.53; found: C 62.63, H 5.39, N 8.42.

14. $9 - \{3'-Bromo-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-5'-O-(monomethoxytrityl)-\beta-D-xylofuranosyl\}-adenine (15). As described in$ *Exper. 5*, with dioxane (8 ml), conc. NH₃ (10 ml), and 0.115 g (0.14 mmol) of 14; after evaporation coevaporation with toluene (2 × 10 ml), and prep. TLC (silica gel (40 × 20 × 0.2 cm), CHCl₃/MeOH 50.1 (2 developments); elution with AcOEt (300 ml) 0.09 g (90%) of amorphous solid were obtained. UV (MeOH): 233 (4.25), 258 (4.23). ¹H-NMR (CDCl₃): 8.29 (s, H-C(8)); 8.10 (s, H-C(2)); 7.47-7.51, 7.26-7.38 (2m, 12 H, MeOTr); 6.84 (d, 2 H, o to MeO); 6.70 (br. s, NH₂); 6.01 (d, H-C(1')); 4.82 (m, H-C(2')); 4.58 (m, H-C(4')); 4.09 (m, H-C(3')); 3.79 (s, MeO); 3.70 (dd, 1 H-C(5')); 3.37 (dd, 1 H-C(5')); 0.90 (s, t-Bu); 0.15 (s, MeSi); 0.13 (s, MeSi). Anal. calc. for C₃₆H₄₂BrN₅O₄Si (716.8): C 60.33, H 5.91, N 9.77; found: C 60.49, H 5.78, N 9.94.

15. N⁶-Benzoyl-9- {3'-bromo-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy- β -D-xylofuranosyl}adenine (16). As described in *Exper.* 6, with 80% ACOH (10 ml) and 0.246 g (0.3 mmol) of 14; workup with CHCl₃ (100 ml) and phosphate buffer pH 7 (2 × 100 ml); chromatography (silica gel (42 × 2 cm), CHCl₃/MeOH 100:1) gave 0.142 g (86%) of amorphous solid. UV (MeOH): 232 (sh, 4.18), 260 (sh, 4.14), 279 (4.35). ¹H-NMR (CDCl₃): 9.03 (br. *s*, NH); 8.81 (*s*, H–C(8)); 8.09 (*s*, H–C(2)); 8.02–7.99 (*m*, 2 H, bz); 7.63–7.48 (*m*, 3 H, bz); 5.73 (*d*, *J* = 5.8, H–C(1')); 5.21 (*t*, OH–C(5')); 5.16 (*m*, H–C(2')); 4.50 (*m*, H–C(4')); 4.40 (*m*, H–C(3')); 4.04 (*m*, 2 H–C(5')); 0.79 (*s*, *t*-Bu); 0.03 (*s*, MeSi); –0.42 (*s*, MeSi). Anal. calc. for C₂₃H₃₀BrN₅O₄Si (548.5): C 50.36, H 5.51, N 12.77; found: C 50.22, H 5.78, N 12.53.

16. N⁶-Benzoyl-9- {3'-bromo-5'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy- β -D-xylofuranosyl}adenine (17). As described in *Exper.* 7, with 0.4 g (0.9 mmol) of 12, 0.164 g (1.08 mmol) of (t-Bu)Me₂SiCl, and pyridine (3 ml); after evaporation and coevaporation with toluene, workup with CHCl₃ (50 ml) and phosphate buffer pH 7 (2 × 50 ml); chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 99:1) and prep. TLC (silica gel, CHCl₃/MeOH 97:3 (2 developments)) gave 0.465 g (94%) of amorphous solid. UV (MeOH): 230 (sh, 4.15), 259 (sh, 4.08), 279 (4.32). ¹H-NMR (CDCl₃): 9.02 (br. *s*, NH); 8.72 (*s*, H–C(8)); 8.31 (*s*, H–C(2)); 8.01–7.98 (*m*, 2 H, bz); 7.60–7.48 (*m*, 3 H, bz); 6.02 (*d*, *J* = 4.0, H–C(1')); 5.40 (*d*, OH–C(2')); 4.99 (*m*, H–C(2')); 4.53 (*m*, H–C(4')); 4.47 (*m*, H–C(3')); 4.09–3.92 (2dd, 2 H–C(5')); 0.74 (*s*, *t*-Bu); -0.04 (*s*, MeSi); -0.14 (*s*, MeSi). Anal. calc. for C₂₃H₃₀BrN₅O₄Si (548.5): C 50.36, H 5.51, N 12.77; found: C 50.45, H 6.11, N 12.61.

17. N⁶-Benzoyl-9-[3'-bromo-3'-deoxy-2',5'-bis-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (18). As described in *Exper. 3*, with 0.434 g (1 mmol) of 12, 0.74 g (2.4 mmol) of MeOTrCl and pyridine (8 ml), 7 days at 50°; after addition of MeOH (5 ml) and evaporation, workup with CHCl₃ and phosphate buffer pH 7 (2 × 50 ml); chromatography (silica gel, CH₂Cl₂/CHCl₃ 4:1, CH₂Cl₂/CHCl₃ 1:1, and CHCl₃) and prep. TLC (CHCl₃/MeOH 99.5:0.5) of the product fraction gave 0.30 g (43%) of 13 and 0.524 g (54%) of 18 as amorphous solid. 18: UV (MeOH): 231 (4.62), 260 (sh, 4.20), 279 (4.39). ¹H-NMR (CDCl₃): 9.07 (br. *s*, NH); 8.89 (*s*, H–C(8)); 8.36 (*s*, H–C(2)); 8.01 (*m*, 2 H, bz); 7.59–7.14, 6.80–6.72 (*2 m*, 27 H, bz, MeOTr); 6.80 (*d*, 2 H, *o* to MeO); 6.72 (*d*, 2 H, *o* to MeO); 6.63 (*d*, *J* = 1.2, H–C(1')); 4.57 (*m*, H–C(3')); 4.19 (*m*, H–C(4')); 3.76 (*s*, MeO); 3.72 (*s*, MeO); 3.61–3.54 (*dd*, 1 H–C(5')); 3.20–3.15 (*dd*, 1 H–C(5')); 3.13 (*m*, H–C(2')). Anal. calc. for C₅₇H₄₈BrN₅O₆ (978.9): C 69.93, H 4.94, N 7.15; found: C 69.67, H 5.03, N 7.21.

18. N⁶-Benzoyl-9-[3'-bromo-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (19). As described in *Exper.* 6, with 0.216 g (0.22 mmol) of 18 and 80% ACOH (10 ml), 18 h at 4°; workup with CHCl₃ (50 ml), H₂O (2 × 50 ml), and CHCl₃ (50 ml); chromatography (CHCl₃) gave 0.11 g (71%) of amorphous solid. UV (MeOH): 231 (4.44), 279 (4.34). ¹H-NMR (CDCl₃): 9.18 (br. s, NH); 8.84 (s, H–C(8)); 8.32 (s, H–C(2)); 8.03–8.00 (m, 2 H, bz); 7.59–7.13 (m, 15 H, bz, MeOTr); 6.68 (d, 2 H, o to MeO); 6.55 (s, H–C(1')); 4.67 (m, H–C(4')); 4.37 (m, H–C(3')); 3.95–3.88 (m, H–C(5')); 3.75–3.63 (m, 1 H–C(5')); 3.71 (s, MeO); 3.45 (m, H–C(2')); 2.56 (br. s, OH–C(5')). Anal. calc. for $C_{37}H_{32}BrN_5O_5$ (706.6): C 62.89, H 4.56, N 9.91; found: C 62.36, H 4.60, N 9.73.

19. 9-(3'-Deoxy-3'-iodo- β -D-xylofuranosyl) adenine (20). To a soln. of 15 g (0.1M) of NaI in dry MeCN (100 ml) were added with stirring 5.2 ml (37 mmol) of freshly distilled 2-acetoxyisobutyryl chloride and 2.67 g (10 mmol) of adenosine. The mixture was stirred for 30 min at r.t. and then poured into a sat. soln. of Na₂S₂O₃ (150 ml) and NaHCO₃ (250 ml; \rightarrow decoloration). The soln. was extracted with CH₂Cl₂ (2 × 100 ml) and washed with H₂O the

org. layer dried (Na₂SO₄) and evaporated, and the amorphous solid dissolved in 1.5% HCl/MeOH (200 ml) and kept at r.t. for 8 days in the dark. The mixture was then neutralized with PbCO₃ (10 g) in little CHCl₃/MeOH 4:1 and separated by column chromatography (silica gel (40 × 6 cm), CHCl₃/MeOH 95:5, then CHCl₃/MeOH 9:1) into 0.65 g (16%) of 9-(2'-O-acetyl-3'-deoxy-3'-iodo-β-D-ribofuranosyl)adenine and, after recrystallization from MeOH, 1.5 g (40%) of **20**. Colorless crystals. M.p. 172° ([21]: 173°). UV (MeOH): 258 (4.21). ¹H-NMR ((D₆)DMSO): 8.32 (s, H-C(8)); 8.14 (s, H-C(2)); 7.38 (br. s, NH₂); 6.23 (d, OH-C(2')); 5.75 (d, J = 5.5, H-C(1')); 5.61 (t, OH-C(5')); 4.94 (m, H-C(2')); 4.48 (m, H-C(3')); 4.08 (m, H-C(4')); 3.85 (m, 2 H-C(5)).

20. N⁶,N⁶-*Dibenzoyl-9-(3'-deoxy-3'-iodo-β-D-xylofuranosyl)adenine* (**21**). As described in *Exper. 2*, with 0.76 g (2 mmol) of **20**, 1.28 ml (10 mml) of Me₃SiCl, pyridine (10 ml; 10 min at r.t.), and 1.2 ml (12 mmol) of benzoyl chloride (2.5 h at r.t.); MeOH (5 ml) was added and the mixture further stirred for 3 h; workup with H₂O (40 ml) and AcOEt (2 × 40 ml); chromatography (CHCl₃/MeOH 99:1) and prep. TLC (CHCl₃/MeOH 99:1) gave 0.78 g (66%) of **21**. Amorphous solid. UV (MeOH): 249 (4.37), 271 (sh, 4.28). ¹H-NMR ((D₆)DMSO): 8.86 (*s*, H–C(8)); 8.72 (*s*, H–C(2)); 7.77 (*m*, 4 H, bz); 7.62–7.43 (*m*, 6 H, bz); 6.38 (*t*, OH–C(2')); 5.95 (*d*, *J* = 4.9, H–C(1')); 5.19 (*t*, OH–C(5')); 5.05 (*m*, H–C(2')); 4.50 (*m*, H–C(3')); 4.11 (*m*, H–C(4')); 3.75 (*m*, 2 H–C(5')). Anal. calc. for C₂₄H₂₀IN₅O₅ (585.4): C 49.24, H 3.44, N 11.96; found: C 48.89, H 3.32, N 11.78.

21. N^{6} , N^{6} -*Dibenzoyl-9-[3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)-β-D-xylofuranosyl]adenine* (22). As described in *Exper. 3*, with pyridine (3.5 ml), 0.4 g (0.68 mmol) of 21, and 0.222 g of MeOTrCl, 70 h; after evaporation and coevaporation with toluene (2×), workup with CHCl₃ (20 ml) and phosphate buffer pH 7 (2 × 20 ml); chromatography (silica gel (28 × 4 cm), CHCl₃/CH₂Cl₂ 1:1 (1 l), then CHCl₃ (100 ml)), prep. TLC (plate 40 × 20 × 0.2 cm, AcOEt), and reprecipitation from CHCl₃/hexane gave 0.51 g (87%) of 22. Amorphous powder. UV (MeOH): 231 (4.52), 250 (sh, 4.42), (270 (4.32)). ¹H-NMR (CDCl₃): 8.63 (*s*, H–C(8)); 8.35 (*s*, H–C(2)); 7.80 (*m*, 4 H, bz); 7.30 (*m*, 18 H, bz, MeOTr); 6.79 (*d*, 2 H, *o* to MeO); 5.95 (*d*, *J* = 2.7, H–C(1')); 5.13 (*m*, H–C(2')); 4.35 (*m*, H–C(3')); 4.23 (*m*, OH–C(2'), H–C(4')); 3.76 (*s*, MeO); 3.43 (2dd, 2 H–C(5')). Anal. calc. for C₄₄H₃₆IN₅O₆ (857.7): C 61.61, H 4.23, N 8.16; found: C 61.29, H 4.43, N 8.11

22. N⁶-Benzoyl-9-(3'-deoxy-3'-iodo- β -D-xylofuranosyl)adenine (23). A soln. of 0.45 g (0.77 mmol) of 21 and 0.64 g (9.2 mmol) of imidazole in MeOH (50 ml) was kept for 7 days at r.t. The mixture was evaporated, diluted with AcOEt (200 ml), washed with phosphate buffer pH 7 (2 × 200 ml), dried, and evaporated. The residue was purified by prep. TLC (CHCl₃/MeOH 95:5 (two developments)) and recrystallization from AcOEt: 0.35 g (94%) of 23 Colorless crystals. M.p. 186°. UV (MeOH): 279 (4.34). ¹H-NMR ((D₆)DMSO): 11.25 (*s*, NH); 8.77 (*s*, H–C(8)); 8.68 (*s*, H–C(2)); 8.04 (*s*, 2 H, bz); 7.60 (*m*, 3 H, bz); 6.36 (*d*, OH–C(2')); 5.95 (*d*, J = 4.9, H–C(1')); 5.28 (*t*, OH–C(5')); 5.04 (*m*, H–C(2')); 4.52 (*m*, H–C(3')); 4.12 (*m*, H–C(4')); 3.88 (*m*, 2 H–C(5')). Anal. calc. for C₁₇H₁₆IN₅O₄ (481.2): C 42.43, H 3.35, N 14.55; found: C 42.45, H 3.12, N 14.28.

23. N⁶-Benzoyl-9-[3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)-β-D-xylofuranosyl]adenine (24). As described in *Exper. 3*, with 0.53 g (1.1 mmol) of 23, 0.407 g (1.32 mmol) of MeOTrCl, and pyridine (6 ml), 41 h; workup with CHCl₃ (50 ml, no MeOH) and H₂O (2 × 50 ml); chromatography (CH₂Cl₂/CHCl₃ 1:1, then CHCl₃) gave 0.694 g (84%) of 24. Amorphous solid. UV (MeOH): 279 (4.30). ¹H-NMR (CDCl₃): 8.80 (*s*, H–C(8)); 8.31 (*s*, H–C(2)); 8.02 (*s*, 2 H, bz); 7.60–7.21 (*m*, 18 arom. H); 6.78 (*d*, 2 H, *o* to MeO); 5.99 (*d*, H–C(1')); 5.14 (*m*, H–C(2')); 4.42 (*m*, H–C(4')); 4.30 (*m*, H–C(3')); 3.77 (*s*, MeO); 3.59–3.41 (*m*, 2 H–C(5')). Anal. calc. for $C_{37}H_{32}IN_5O_5$ (753.6): C 58.97, H 4.28, N 9.29; found: C 58.49, H 4.20, N 9.22.

24. N⁶-Benzoyl-9- {2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)- β -D-xylo-furanosyl}adenine (25). As described in Exper. 4, with 0.555 g (0.74 mmol) of 24, 0.166 g of of (t-Bu)Me₂SiCl, 0.15 g (2.21 mmol) of imidazole, and pyridine (4 ml) 29 h; after evaporation, workup with CHCl₃ (50 ml) and H₂O (50 ml); chromatography (silica gel (42 × 2 cm), CH₂Cl₂/CHCl₃ 2:1) gave 0.561 g (88%) of 25. Amorphous solid. UV (MeOH): 280 (4.37). ¹H-NMR (CDCl₃): 8.77 (s, H–C(8)); 8.31 (s, H–C(2)); 8.05 (s, 2 H, bz); 7.60–7.28 (m, 15 arom. H); 6.85 (d, 2 H, o to MeO); 6.06 (d, H–C(1')); 5.08 (m, H–C(2')); 4.09 (m, H–C(3'), H–C(4')); 3.79 (s, MeO); 3.68–3.95 (m, 2 H–C(5')); 0.91 (s, t-Bu); 0.15 (s, MeSi); 0.14 (s, MeSi). Anal. calc. for C₄₃H₄₆IN₅O₅ (867.9): C 59.51, H 5.34, N 8.07; found: C 59.65, H 5.55, N 8.10.

25. 9-{2'-O-[/(tert-Butyl)dimethylsilyl]-3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)-β-D-xylofuranosyl}adenine (26). As described in *Exper. 5*, with dioxane (8 ml) conc. NH₃ (10 ml), and 0.1 g (0.115 mmol) of 25, 22 h. The residue was purified by prep. TLC (silica gel (40 × 20 × 0.2 cm), CHCl₃/MeOH 50:1) and reprecipitation from little CHCl₃/hexane: 0.082 g (93%) of 26. Amorphous powder. UV (MeOH): 233 (4.23), 259 (4.22). ¹H-NMR (CDCl₃): 8.30 (s, H-C(8)); 8.07 (s, H-C(2)); 7.52-7.21 (m, 12 arom. H); 6.84 (d, 2 H, o to MeO); 5.97 (d, J = 1.8, H-C(1')); 5.06 (m, H-C(2')); 4.08 (m, H-C(3'), H-C(4')); 3.79 (s, MeO); 3.64 (dd, 1 H-C(5')); 3.27 (dd, dd) = 1.83 (dd) 1 H–C(5'); 3.27 (*dd*, 1 H–C(5')); 0.89 (*s*, *t*-Bu); 0.13 (*s*, MeSi); 0.08 (*s*, MeSi). Anal. calc. for $C_{36}H_{42}IN_5O_4Si$ (763.8): C 56.61, H 5.54, N 9.17; found: C 56.90, H 5.82, N 8.88.

26. N⁶-Benzoyl-9- {2'-O-[(tert-butyl) dimethylsilyl]-3'-deoxy-3'-iodo- β -D-xylofuranosyl}adenine (27). As described in *Exper.*6, with 0.32 g (0.37 mmol) of 25 in 80 % aq. AcOH (10 ml); workup with CHCl₃ (100 ml) and H₂O (2 × 100 ml); chromatography (silica gel (32 × 2 cm), CHCl₃/MeOH 100:1) gave 0.213 g (95%) of 27. Amorphous solid. UV (MeOH): 229 (sh, 4.16), 279 (4.34). ¹H-NMR (CDCl₃): 9.20 (s, NH); 8.79 (s, H–C(8)); 8.07 (s, H–C(2)); 8.00 (s, 2 H, bz); 7.55 (m, 3 H, bz); 5.73 (t, OH–C(5')); 5.63 (d, J = 6.1, H–C(1')); 5.20 (m, H–C(2')); 4.64–4.32 (m, H–C(3'), H–C(4')); 4.09 (m, 2 H–C(5')); 0.78 (s tert-Bu); 0.04 (s, MeSi); -0.55 (s, MeSi). Anal. calc. for C₂₃H₄₀IN₅O₄Si (595.5): C 46.39, H 5.08, N 11.76; found: C 46.27, H 5.07, N 11.84.

27. N⁶-{[2-(4-Nitrophenyl]ethoxy]carbonyl}-9-(3'-deoxy-3'-iodo- β -D-xylofuranosyl)adenine (28). After evaporation of a soln. of 20 (1.9 g, 5 mmol) in dry pyridine (30 ml), the residue was redissolved in 30 ml of dry pyridine and treated with Me₃SiCl for 15 min at r.t. with stirring. Then, 3.11 g (10 mmol) of 1-methyl-3-{[2-(4-nitrophenyl)ethoxy]carbonyl}imidazolium chloride [25] were added and stirred for 4 days. MeOH (20 ml) was added and after another 4 h stirring, the soln. evaporated and coevaporated with toluene (2 × 20 ml). The residue was dissolved in AcOEt (250 ml) and extracted with H₂O (250 ml). The org. layer was dried (Na₂SO₄) and evaporated and the solid purified by chromatography (silica gel (35 × 3 cm), CHCl₃/MeOH 50:1) and recrystallization from MeOH: 2.06 g (72%) of 28. Colorless crystals. M.p. 117°. UV (MeOH): 267 (4.44). ¹H-NMR ((D₆)DMSO): 10.57 (br. s, NH); 8.63 (s, H-C(8), H-C(2)); 8.16 (d, 2 H, o to NO₂); 7.62 (d, 2 H m to NO₂); 6.30 (d, OH-C(2')); 5.90 (d, J = 4.9, H-C(1')); 5.25 (t, OH-C(5')); 5.03 (m, H-C(2')); 4.50 (m, H-C(3')); 4.38 (t, CH₂CH₂O); 4.10 (m, H-C(4')); 3.77 (m, 2 H-C(5')); 3.11 (t, CH₂CH₂O). Anal. calc. for C₁₉H₁₉IN₆O₇·H₂O (588.3): C 38.79, H 3.59, N 14.28; found: C 38.94, H 3.43, N 14.14.

28. N^{6} -{[2-(4-Nitrophenyl)ethoxy]carbonyl}-9-[3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (29). As described in *Exper. 3*, with pyridine (6 ml), 0.57 g (1 mmol) of 28 and 0.37 (1.2 mmol) of MeOTrCl 26 h; chromatography (silica gel (40 × 2 cm), CH₂Cl₂/CHCl₃ 1:1) gave 0.71 g (84%) of 29. Amorphous solid. UV (MeOH): 235 (4.29), 267 (4.49), 273 (sh, 4.42). ¹H-NMR (CDCl₃): 8.72 (s, H–C(8)); 8.18 (m, H–C(2), 2 H, o to NO₂); 7.39–7.19 (m, 14 arom. H); 6.77 (d, 2 H, o to MeO); 5.92 (s, H–C(1')); 5.13 (m, H–C(2')); 4.52 (t, CH₂CH₂), 4.41 (m, H–C(3')); 4.30 (m, H–C(4')); 3.77 (s, MeO); 3.48 (2dd, 2 H–C(5')); 3.14 (t, CH₂CH₂O). Anal. calc. for C₃₉H₃₅IN₆O₈ (842.6): C 55.59, H 4.19, N 9.97; found: C 55.38, H 4.23, N 9.64.

29. N⁶-{[2-(4-Nitrophenyl)ethoxy]carbonyl}-9-{ $2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-iodo-5'-O-(monomethoxytrityl)-\beta-D-xylofuranosyl}adenine ($ **30**). As described in*Exper. 4*, with pyridine (3 ml), 0.548 g (0.65 mmol) of**29**, 0.133 g (1.95 mmol) of imidazole, and 0.147 g (0.98 mmol) of (*t*-Bu)Me₂SiCl, 31 h; after addition of MeOH (5 ml) and evaporation, workup with CHCl₃ (30 ml) and phosphate buffer pH 7; purification by chromatography (silica gel (34 × 2 cm), CH₂Cl₂/CHCl₃ 2:1): 0.53 g (85%) of**30**. Solid foam. UV (MeOH): 235 (4.34), 267 (4.54), 275 (sh, 4.46). ¹H-NMR (CDCl₃): 8.71 (*s*, H–C(8)); 8.18 (*m*, H–C(2), 2 H,*o*to NO₂); 7.50–7.27 (*m*, 14 arom. H); 6.84 (*d*, 2 H,*o*to MeOH); 6.01 (*d*, H–C(1')); 5.06 (*m*, H–C(2')); 4.51 (*t*, CH₂CH₂O); 4.09 (*m*, H–C(3'), H–C(4')); 3.79 (*s*, MeO); 3.67–3.26 (2*dd*, 2 H–C(5')); 3.14 (*t*, CH₂CH₂O); 0.89 (*s*,*t*-Bu); 0.13 (*s*, MeSi); 0.10 (*s*, MeSi). Anal. calc. for C₄₅H₄₉IN₆O₈Si (956.9): C 56.48, H 5.16, N 8.78; found: C 56.67, H 4.96, N 8.71.

30. N⁶-Benzoyl-9-(3'-fluoro-3'-deoxy- β -D-xylofuranosyl)adenine (31). As described in *Exper.* 2, with 0.228 g (0.85 mmol) of 9-(3'-deoxy-3'-fluoro- β -D-xylofuranosyl)adenine [22], pyridine (4 ml), Me₃SiCl (0.6 ml), benzoyl chloride (0.5 ml; 2 h), H₂O (0.85 ml; 5 min), and conc. NH₃ (1.7 ml). The mixture was stirred at r.t. for 30 min, evaporated, and the product purified by chromatography (CHCl₃/MeOH 95:5) and recrystallization from MeOH/ Et₂O: 0.247 g (78%) of **31**. Colorless crystals. M.p. 189–190°. UV (MeOH): 279 (4.36). ¹H-NMR ((D₆)DMSO): 11.23 (*s*, NH); 8.77 (*s*, H–C(8)); 8.43 (*s*, H–C(2)); 8.02 (*m*, 2 arom. H); 7.59 (*m*, 3 arom. H); 6.38 (*d*, OH–C(2')); 6.1 (*d*, *J* = 2.4, H–C(1')); 5.13 (*m*, *J*(3',F) = 52, H–C(3')); 5.07 (*t*, OH–C(5')); 4.83 (*m*, *J*(2',F) = 15, H–C(2')); 4.35 (*m*, *J*(4',F) = 29, H–C(4')); 3.76 (*m*, 2 H–C(5')). Anal. calc. for C₁₇H₁₆FN₅O₄ (373.3): C 54.96, H 4.32, N 18.76; found: C 54.68, H 4.54, N 18.61.

31. N⁶-Benzoyl-9-[3'-deoxy-3'-fluoro-5'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (32). As described in *Exper.3*, with 0.187 g (0.5 mmol) of 31, 0.193 g (0.625 mmol) of MeOTrCl and pyridine (10 ml); after addition of MeOH (1 ml), evaporation, and coevaporation with toluene, the product was purified by chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 98.5:1.5) and precipitation from CHCl₃/Et₂O: 0.274 g (85%) of 32. Amorphous solid. UV (MeOH): 278 (4.34). ¹H-NMR (CDCl₃): 8.95 (*s*, NH); 8.75 (*s*, H–C(8)); 8.06 (*s*, H–C(2)); 7.56–7.97 (*m*, 5 H, Ph); 7.18–7.50 (*m*, 12 H, MeOTr); 6.82 (*d*, 2 H, *o* to MeO); 6.14 (*d*, J = 1.8, H–C(1')); 5.13 (*m*, J(3',F) = 52, H–C(3')); 4.74 (*m*, J(2',F) = 16, H–C(2')); 4.66 (*m*, J(4',F) = 26, H–C(4')); 3.78 (*s*, MeO); 4.44 (*d*, J

OH-C(2')); 3.60 (*m*, 1 H-C(5')); 3.49 (*m*, 1 H-C(5')). Anal. calc. for $C_{37}H_{32}FN_5O_5$ (645.7): C 68.83, H 5.00, N 10.85; found: C 68.68, H 5.33, N 10.41.

32. N⁶-Benzoyl-9- {2'-O-[(tert-butyl) dimethylsilyl]-3'-deoxy-3'-fluoro- β -D-xylofuranosyl}adenine (33). As described in *Exper.* 4, with 0.226 g (0.35 mmol) of **32**, 80 mg (0.52 mmol) of (t-Bu)Me₂SiCl, 72 mg (1.05 mmol) of imidazole, and pyridine (5 ml), 48 h; after evaporation and coevaporation with toluene, workup with CHCl₃ (20 ml) and phosphate buffer pH 7.0 (2 × 20 ml). The resulting oil in CH₂Cl₂/MeOH 4:1 (5 ml) was treated with 0.1 g of TsOH · H₂O. After 30 min, the mixture was diluted with CHCl₃ (10 ml), washed with phosphate buffer pH 7 (3 × 20 ml), dried, and evaporated. The resulting oil was purified by prep. TLC (CHCl₃/MeOH 95:5) and reprecipitated from Et₂O/hexane: 130 mg (76%) of **33**. Amorphous solid. UV (MeOH): 278 (4.33). ¹H-NMR (CDCl₃): 8.94 (s, NH); 8.81 (s, H-C(8)); 8.13 (s, H-C(2)); 8.52–8.00 (m, 5 H, Ph); 6.00 (d, *J* = 4.0, H-C(1')); 5.08 (m, *J*(3',F) = 56, H-C(3')); 4.94 (m, *J*(2',F) = 14, H-C(2')); 4.53 (m, *J*(4',F) = 20, H-C(4')); 4.04 (m, 2 H-C(5')); 3.46 (t, OH-C(5')); 0.84 (s, t-Bu); 0.04 (s, MeSi). Anal. calc. for C₂₃H₃₀FN₅O₄Si · 0.5 H₂O (497.5): C 55.52, H 6.28, N 14.08; found: C 55.73, H 6.28, N 14.03.

33. $9-(3'-Azido-3'-deoxy-\beta-D-xylofuranosyl)-N^6$ -benzoyladenine (34). As described in *Exper.2*, with 0.292 g (1 mmol) of $9-(3'-azido-3'-deoxy-\beta-D-xylofuranosyl)adenine [22], pyridine (5 ml), 0.7 ml of Me₃SiCl, benzoyl chloride (0.6 ml; 2 h), H₂O (1 ml; 5 min), conc. NH₃ (2 ml). The mixture was stirred at r.t. for 30 min and evaporated and the product purified by chromatography (silica gel, CHCl₃/MeOH 95:5) and recrystallization from MeOH/H₂O: 0.32 g (76%) after drying at 50°$ *in vacuo*. Colorless crystals. M.p. 168° (soften), 178° (dec.). UV (MeOH): 280 (4.35). ¹H-NMR ((D₆)DMSO): 11.24 (*s*, NH); 8.77 (*s*, H–C(8)); 8.64 (*s*, H–C(2)); 8.04–7.59 (*m*, 5 H, bz); 6.31 (*d*, OH–C(2')); 6.01 (*d*, <math>J = 4.6, H–C(1')); 5.17 (*t*, OH–C(5')); 4.84 (*m*, H–C(2')); 4.39 (*m*, H–C(3'), H–C(4')); 3.70 (*m*, 2 H–C(5')). Anal. calc. for C₁₇H₁₆N₈O₄·0.5 H₂O (405.4): C 50.37, H 4.22, N 27.64; found: C 50.38, H 4.00, N 27.54.

34. $9-[3'-Azido-3'-deoxy-5'-O-(monomethoxytrityl)-\beta-D-xylofuranosyl]-N^6-benzoyladenine (35).$ As described in *Exper.3*, with 0.243 g (0.6 mmol) of 34, 0.222 g (0.72 mmol) of MeOTrCl, and pyridine (10 ml); after addition of MeOH (1 ml), evaporation, and coevaporated with toluene, the product was purified by chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 99:1) and reprecipitation from Et₂O/hexane: 0.355 g (88%) of 35. Amorphous solid. UV (MeOH): 279 (4.33). ¹H-NMR (CDCl₃): 8.88 (*s*, NH); 8.79 (*s*, H–C(8)); 8.13 (*s*, H–C(2)); 7.97–7.52 (*m*, 5 H, Ph); 7.15–7.35 (*m*, 12 H, MeOTr); 6.75 (*d*, 2 H, *o* to MeO); 5.96 (*d*, J = 4.3, H–C(1')); 5.09 (*d*, OH–C(2')); 4.95 (*m*, H–C(2')); 4.57 (*m*, H–C(4')); 4.39 (*m*, H–C(3')); 3.77 (*s*, MeO); 3.46 (*m*, H–C(5')); 3.32 (*m*, H–C(5'')). Anal. calc. for C₃₇H₃₂N₈O₄ (668.7): C 66.46, H 4.82, N 16.76; found: C 66.05, H 4.86, N 16.06.

35. 9- {3'-Azido-2'-O-[(tert-butyl) dimethylsily]-3'-deoxy- β -D-xylofuranosyl}-N⁶-benzoyladenine (**36**). As described in *Exper.* **4**, with 0.267 g (0.4 mmol) of **35**, 90 mg (0.6 mmol) of (*t*-Bu)MeSiCl, 82 mg (1.2 mmol) of imidazole, and pyridine (5 ml), 48 h; after evaporation and coevaporation with toluene, workup with CHCl₃ (20 ml) and phosphate buffer pH 6.0 (2 × 20 ml). The residue was treated with TsOH H_2O as described in *Exper.* **32**; recrystallization from Et₂O gave 0.159 g (78%) of **36**. Colorless crystals. M.p. 145–146°. UV (MeOH): 279 (4.36). ¹H-NMR (CDCl₃): 8.96 (*s*, NH); 8.82 (*s*, H–C(8)); 8.04 (*s*, H–C(2)); 7.99–7.55 (*m*, 5 H, Ph); 5.74 (*d*, J = 6.7, H–C(1')); 5.42 (*t*, OH–C(5')); 5.08 (*m*, H–C(2')); 4.44 (*m*, H–C(4')); 4.25 (*m*, H–C(3')); 3.94 (*m*, 2H–C(5')); 0.79 (*s*, *t*-Bu); 0.00 (*s*, MeSi); –0.50 (*s*, MeSi). Anal. calc. for C₂₃H₃₀N₈O₄Si (510.6): C 54.10, H 5.92, N 21.94; found: C 54.20, H 5.90, N 21.61.

36. 2',3'-Anhydro-N⁶-benzoyladenosine (**37**). As described in *Exper.* 2, with 0.43 g (1.73 mmol) of 2',3'-anhydroadenosine [22] [23], 1.1 ml (8.63 mmol) of Me₃SiCl, pyridine (9 ml), benzoyl chloride (1 ml, 8.63 mmol); 2 h); H₂O (1.8 ml; 5 min) and aq. NH₃ (3.4 ml; 30 min); after evaporation, workup with AcOEt (100 ml) and H₂O (2 × 100 ml), coevaporation with toluene, and chromatography (CHCl₃/MeOH 95:5): 0.464 g (76%) of **37**. M.p. 186–187°. UV (MeOH): 230 (sh, 4.11), 258 (sh, 4.06), 279 (4.29). ¹H-NMR ((D₆)DMSO): 11.21 (*s*, NH); 8.76 (*s*, H–C(8)); 8.64 (*s*, H–C(2)); 8.03 (*m*, 2 H, bz); 7.64–7.51 (*m*, 3 H, bz); 6.33 (*s*, H–C(1')); 5.06 (*t*, OH–C(5')); 4.55 (*m*, H–C(2')); 4.24 (*m*, H–C(3')); 4.21 (*m*, H–C(4')); 3.53 (*m*, 2 H–C(5')). Anal. calc. for C₁₇H₁₅N₅O₄ (353.3): C 57.79, H 4.28, N 19.82; found: C 57.74, H 4.30, N 19.67.

37. 2',3'-Anhydro-N⁶-benzoyl-5'-O-(monomethoxytrityl)adenosine (**38**). As decribed in *Exper.9*, with 1M Bu₄NF in THF (35 ml) and 0.15 mmol of N⁶-benzoyl-9- $\{2'-O-[(tert-butyl)]$ dimethylsilyl]-3'-deoxy-3'-halo-5'-O-(monomethoxytrityl)- β -D-xylofuranosyl}adenine (**4**, 1**4**, or 2**5**), 48 h; workup with CHCl₃ (50 ml) and H₂O (50 ml); purification by prep. TLC (silica gel (40 × 20 × 0.2 cm), CHCl₃/MeOH 50:1; elution with AcOEt) and reprecipitation from CHCl₃/hexane: 92% (from **4**), 85% (from **14**), and 83% (from **25**) of **38**. Amorphous powder. UV (MeOH): 229 (4.49), 260 (sh, 4.14), 280 (4.32). ¹H-NMR (CDCl₃): 9.11 (br. s, NH); 8.72 (s, H–C(8)); 8.08 (m, 3 H, H–C(2), bz); 7.65 (m, 3 H, bz); 7.30 (m, 12 H, MeOTr); 6.79 (d, 2 H, o to MeO); 6.18 (d, H–C(1')); 4.53 (m, 25) (m

H-C(2'), H-C(3'); 4.13 (*m*, H-C(4')); 3.75 (*s*, MeO); 3.44 (*dd*, 1 H-C(5')); 3.30 (*dd*, 1 H-C(5')). Anal. calc. for $C_{37}H_{31}N_5O_5$ (625.7); C 71.03, H 4.99, N 11.19; found: C 70.84, H 5.07, N 10.98.

38. 2',3'-Anhydro-5'-O-(monomethoxytrityl) adenosine (**39**). As described in *Exper.5*, with dioxane (2 ml), 64 mg (0.1 mmol) of **38**, and conc. NH₃ (8 ml). After evaporation and coevaporation with toluene (2 × 10 ml), the product was purified by prep. TLC (silica gel ($40 \times 20 \times 0.2$ cm), CHCl₃/MeOH 100:3 (two developments); elution with AcOEt) and reprecipitation from CHCl₃/hexane: 43 mg (81%) of **39**. Amorphous powder. UV (MeOH): 233 (4.22), 259 (4.13). ¹H-NMR (CDCl₃): 8.23 (*s*, H–C(8)); 7.86 (*s*, H–C(2)); 7.30 (*m*, 12 H, MeOTr); 6.82 (*d*, 2 H, *o* to MeO); 6.20 (*s*, H–C(1')); 5.76 (br. *s*, NH₂); 4.56 (*m*, H–C(2')); 4.51 (*m*, H–C(3')); 4.17 (*m*, H–C(4')); 3.84 (*s*, MeO); 3.44 (*dd*, 1 H–C(5')); 3.28 (*dd*, 1 H–C(5')). Anal. calc. for C₃₀H₂₇N₅O₄ (521.6): C 69.09, H 5.22, N 13.43; found: C 68.92, H 5.25, N 13.22.

39. N⁶-Benzoyl-9-{2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-5'-O-(monomethoxytrityl)- β -D-glycero-pent-3'enofuranosyl}adenine (40) and N⁶-Benzoyl-9-[3'-deoxy-5'-O-(monomethoxytrityl)- β -glycero-pent-3'-enofuranosyl]adenine (41). A soln. of 0.33 g (0.4 mmol) of 14 or of 0.416 g (0.48 mmol) of 25 in dry pyridine (20 ml) was evaporated and the residue treated with 0.5M DBU in dry pyridine (130 ml) with stirring at r.t. for 24 h. After neutralization with AcOH (3.75 ml) in dry pyridine (66 ml), each solution was evaporated and the residue partitioned thrice between CHCl₃ (50 ml) and 0.15M KH₂PO₄ (50 ml). The org. layers were dried (Na₂SO₄) and evaporated and each residue chromatographed (silica gel (27 × 4 cm)), 40 eluting with CH₂Cl₂/CHCl₃ 2:1, and after 1 l of eluat, 41 with CHCl₃/MeOH 100:1: 0.236 g (80%) of 40 and 0.04 g (15%) of 41 from 14; 0.204 g (49%) of 40 and 0.103 g (32%) of 41 from 25. Amorphous solids.

Compound 40: UV (MeOH): 230 (4.47), 279 (4.35). ¹H-NMR (CDCl₃): 8.91 (br. s, NH); 8.81 (s, H–C(8)); 8.10 (s, H–C(2)); 8.04 (m, 2 H, bz); 7.60–7.24 (m, 15 H, bz, MeOTr); 6.82 (d, 2 H, o to MeO); 6.48 (d, J = 1.5, H–C(1')); 5.37 (s, H–C(3')); 5.17 (m, H–C(2')); 3.77 (s, MeO, 2 H–C(5')); 0.88 (s, t-Bu); 0.09 (s, MeSi); 0.07 (s, MeSi). Anal. calc. for C₄₃H₄₅N₅O₅Si (739.9): C 69.80, H 6.13, N 9.46; found: C 69.87, H 5.95, N 9.65.

Compound **41**: UV (MeOH): 230 (4.46), 279 (4.34). ¹H-NMR (CDCl₃): 9.05 (br. *s*, NH); 8.78 (*s*, H–C(8)); 8.03 (*m*, 2 H, bz); 7.99 (*s*, H–C(2)); 7.60–7.20 (*m*, 15 H, bz, MeO*Tr*); 6.83 (*d*, 2 H, *o* to MeO); 6.52 (*d*, J = 1.5 Hz, H–C(1')); 5.46 (*s*, H–C(3')); 5.20 (*m*, H–C(2')); 3.82 (*s*, 2 H–C(5')); 3.78 (*s*, MeO). Anal. calc. for C₃₇H₃₁N₅O₅ (625.7): C 71.03, H 4.99, N 11.19; found: C 70.81, H 5.05, N 11.09.

40. $9 - \{2'-O_{-1}(\text{tert-Butyl}) dimethylsilyl]-3'-deoxy-5'-O_{-(monomethoxytrityl)-\beta-D_{-D_{-}}glycero-pent-3'-enofurano$ $syl}adenine (42). 40.1. As described in$ *Exper. 5*, with dioxane (1.5 ml), 54 mg (0.07 mmol) of 40, and conc. NH₃(6 ml), 4 days. The product was purified by prep. TLC (silica gel (40 × 20 × 0.2 cm), CHCl₃/MeOH 50:1; elutionwith CHCl₃/MeOH 4:1) and reprecipitation from little CHCl₃/hexane (50 ml): 35 mg (75%) of 40. Amorphouspowder.

40.2. As described in *Exper. 39*, with 0.144 g (0.15 mmol) of **30**, pyridine (20 ml), 0.5M DBU in pyridine (50 ml), 21 h; workup with AcOH (1.4 ml) in pyridine (25 ml), evaporation and coevaporation with toluene (2×), CHCl₃ (50 ml) and 0.15M K₂HPO₄; chromatography (silica gel (33 × 2 cm), CHCl₃ (300 ml), CHCl₃/MeOH 100:1 (200 ml), and CHCl₃/MeOH 50:1 (100 ml)) gave 0.09 g (84%) of **40**. Solid foam. UV (MeOH): 233 (4.26), 259 (4.21). ¹H-NMR (CDCl₃): 8.36 (*s*, H–C(8)); 7.86 (*s*, H–C(2)); 7.46–7.20 (*m*, 12 H, MeO*Tr*); 6.82 (*d*, 2 H, *o* to MeO); 6.40 (*d*, J = 1.8, H–C(1')); 5.81 (br. *s*, NH₂); 5.35 (*s*, H–C(3')); 5.17 (*m*, H–C(2')); 3.77 (*s*, MeO); 3.75 (*s*, 2 H–C(5')); 0.88 (*s*, *t*-Bu); 0.08 (*s*, MeSi); 0.06 (*s*, MeSi). Anal. calc. for C₃₆H₄₁N₅O₄Si (635.8): C 68.00, H 6.50, N 11.01; found: C 68.10, H 6.20, N 10.96.

41. N⁶-Benzoyl-9-{2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy- β -D-glycero-pent-3'-enofuranosyl}adenine (43). As described in Exper.6, with 80% AcOH (16 ml) and 0.26 g (0.35 mmol) of 40, at 4°; workup with CHCl₃ (50 ml) and phosphate buffer pH 7 (50 ml), coevaporation with pyridine and then toluene; chromatography (silica gel (38 × 2 cm), CHCl₃ (300 ml), CHCl₃/MeOH 100:1) and reprecipitation from CHCl₃/hexane gave 0.12 g (74%). Amorphous powder. UV (MeOH): 232 (sh, 4.33), 278 (4.59). ¹H-NMR (CDCl₃): 9.23 (br. s, NH); 8.77 (s, H-C(8)); 8.02 (m, 3 H, H-C(2); bz); 7.62-7.47 (m, 3 H, bz); 6.44 (d, J = 1.8, H-C(1')); 5.28 (s, H-C(3')); 5.20 (m, H-C(2')); 4.28 (s, 2 H-C(5')); 0.89 (s, t-Bu); 0.05-0.03 (m, Me₂Si).

42. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenosine 2'-(2,5-Dichlorophenyl 2-Cyanoethyl Phosphate) (44). A mixture of 1.175 g (16 mmol) of 1,2,4-triazole and 2.1 g (7.5 mmol) of 2,5dichlorophenyl dichlorophosphate in dry pyridine (20 ml) was stirred for 10 min and then cooled to 0°. A soln. of 3.79 g (5 mmol) of N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsily]-5'-O-(monomethoxytrityl)adenosine [26] [27] in dry pyridine (20 ml) was added dropwise. After stirring for 30 min at 0°, 2.04 g (30 mmol) of 3-hydroxypropanenitrile were added. The mixture was warmed to r.t., stirred 12 h, then diluted with CHCl₃ (200 ml), and treated twice with phosphate buffer pH 7 (200 ml). The aq. layer was extracted again with CHCl₃, the combined org. phase dried (Na₂SO₄), evaporated, and coevaporated with toluene, and the residue chromatographed (silica gel (37 × 4 cm), $CH_2Cl_2(2 l)$ and $CH_2Cl_2/MeOH$ 50:1). The product fraction was rechromatrographed ($CHCl_3(1 l)$, $CHCl_3/MeOH$ 100:1): 4.37 g (84%) of a solid foam.

43. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsily]-5'-O-(monomethoxytrityl)adenosine 2'-(2,5-Dichlorophenyl Triethylammonium Phosphate) (45). A mixture of pyridine (12.5 ml), Et₃N (12.5 ml), H₂O (0.25 ml) and 1.25 g (1.2 mmol) of 44 was stirred for 1.5 h at r.t., then evaporated, and coevaporated with toluene (2 × 30 ml). The residue was chromatographed (silica gel (24 × 4 cm), CHCl₃/MeOH 50:1 (500 ml), then CHCl₃/MeOH 25:1): 1.14 g (87%) of solid foam.

44. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenosine 2'-(2,5-Dichlorophenyl 2-Cyanoethyl Phosphate) (46). To 0.96 g of TsOH \cdot H₂O in CH₂Cl₂ (38 ml) and MeOH (10 ml), 2.28 g (2.2 mmol) of 44 were added and stirred at r.t. for 30 min. The mixture was diluted with CHCl₃ (100 ml) and washed twice with phosphate buffer pH 7 (100 ml), the org. layer dried (Na₂SO₄) and evaporated, and the residue purified by chromatography (silica gel (38 × 4 cm), CHCl₃ (2), CHCl₃/MeOH 50:1): 1.5 g (89%) of solid foam.

45. N^{6} -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenosine 2'-(2,5-Dichlorophenyl 2-Cyanoethyl Phosphate) (47). A mixture of 1.074 g (0.99 mmol) of 45 and 0.685 g (0.94 mmol) of 46 was coevaporated twice with dry pyridine (10 ml) and the residue dissolved in dry pyridine (12 ml). Then, 0.57 g (0.19 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride and 0.473 g (5.76 mmol) of N-methylimidazole were added and stirred at r.t. for 26 h. The mixture was diluted with CHCl₃ (100 ml) and shaken twice with phosphate buffer pH 7 (50 ml), the org. layer dried (Na₂SO₄), evaporated, and coevaporated with toluene (2 × 30 ml), and the residue purified by chromatography (silica gel, CHCl₃ (800 ml), then CHCl₃/MeOH 100:1): 1.3 g (81%) of a solid foam, after drying.

46. N^{6} -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}- N^{6} -benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenosine 2'-(2,5-Dichlorophenyl Triethylammonium Phospate) (48). A mixture of 0.3 g (0.174 mmol) of 47 in pyridine (6 ml), Et₃N (6 ml), and H₂O (0.5 ml) was stirred at r.t. for 2 h, then evaporated, and coevaporated with toluene (2 × 20 ml). The residue was chromatographed (silica gel (16 × 2 cm), CHCl₃/MeOH 50:1): 0.247 g (79%) of a solid foam, after drying.

47. N⁶-Benzoyl-3'- O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'- {O^P-[2-(4-nitrophenyl)ethyl]}-5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}-5'}-N⁶-benzoyl-9-{2'-O-[(tert-butyl)dimethylsilyl]-3'-chloro-3'-deoxy- β -D-xylofuranosyl}adenine (**50**). A mixture of 0.23 g (0.13 mmol) of phosphodiester **49** [18], 0.06 g (0.12 mmol) of **6**, 0.07 ml (0.86 mmol) of N-methylimidazole, and 0.09 g (0.31 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride in dry pyridine (2 ml) was stirred for 37 h at r.t. The mixture was diluted with CHCl₃ (25 ml) and washed with H₂O (2 × 25 ml), the org. layer dried, evaporated, and coevaporated with toluene, and the resulting oil purified by prep. TLC (silica gel, CHCl₃/MeOH 99:1): 0.145 g (56%) of **50**. Amorphous powder. UV (MeOH): 229 (sh, 4.76), 260 (sh, 4.73), 278 (4.88). ¹H-NMR (CDCl₃): 9.13–9.06 (br. s, 3 H, NH); 8.74–8.61 (m, 3 H, H–C(8)); 8.24–7.94 (m, 13 arom. H); 7.7–7.10 (m, 25 arom. H); 6.76 (d, 2 H, o to MeO); 6.18 (m, 2 H, H–C(1')); 5.96 (d, 1 H, H–C(1')); 3.72 (s, MeO); 0.87–0.74 (m, 27 H, t-Bu); 0.09 to -0.09 (m, 18 H, MeSi). Anal. calc. for C₁₀₅H₁₂₀ClN₁₇O₂₃P₂Si₃ (2169.9): C 58.12, H 5.57, N 10.97; found: C 57.58, H 5.77, N 10.82.

48. N^{6} -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichloro-phenyl)] \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-9-[3'-chloro-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (51). As described in *Exper.* 49, 0.247 g (0.15 mmol) of phosphodiester 48 and 2.07 g (0.14 mmol) of 9 were reacted for 18 h at r.t.; prep. TLC (CHCl₃/MeOH 99:1 (3 developments)) gave 0.24 g (74%) of 51. Amorphous powder. UV (MeOH): 255 (sh, 4.92), 260 (sh, 4.59), 280 (4.79). ¹H-NMR (CDCl₃): 9.10–9.02 (br. s, 3 H, NH); 8.89 (m, 1 H, H–C(8)); 8.56 (m, 2 H, H–C(8)); 8.22–8.09 (m, 3 H, H–C(2)); 8.00–7.95 (m, 6 arom. H); 7.59–6.87 (m, 39 arom. H); 3.73, 3.69 (2s, MeO); 0.88–0.76 (m, 18 H, t-Bu); 0.12 to -0.05 (m, 12 H, MeSi). Anal. calc. for C₁₁₅H₁₁₂Cl₅N₁₅O₂₀P₂Si₂ (2319.6): C 59.55, H 4.87, N 9.06; found: C 59.17, H 5.08, N 8.88.

49. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5'}-N⁶-benzoyl-9-{3'-bromo-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy- β -D-xylofuranosyl}adenine (**52**). As described in *Exper.* 47, with 0.3 g (0.17 mmol) of **49**, 0.084 g (0.15 mmol) of **16**, 0.09 ml (1.12 mmol) of *N*-methylimidazole, 0.114 g (0.38 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride, and pyridine (2 ml), 40 h; prep. TLC (silica gel (40 × 20 × 0.2 cm), CHCl₃/MeOH 99:1) gave 0.182 g (55%) of **52**. Amorphous solid. UV (MeOH): 229 (sh, 4.78), 260 (4.75), 276 (4.89). ¹H-NMR (CDCl₃): 9.15 (br. s, 3 H, NH); 8.75 (br. s, 1 H, H–C(8)); 8.67 (m, 2 H, H–C(8)); 8.30-8.01 (m, 13 arom. H); 7.57–7.15 (m, 27 arom. H); 6.80 (d, 2 H, o to MeO); 6.20 (m, 2 H, H–C(1')); 5.96 (br. s,

1 H, H–C(1')); 3.74 (s, MeO); 0.91–0.82 (m, 27 H, t-Bu); 0.12 to -0.04 (m, 18 H, MeSi). Anal. calc. for $C_{105}H_{120}BrN_{17}O_{23}P_2Si_3$ (2214.3): C 56.95, H 5.46, N 10.75; found: C 56.99, H 5.36, N 10.65.

50. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl- $\{2'-[O^P-(2,5-dichloro-phenyl)] \rightarrow 5'\}$ -N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl- $\{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'\}$ -N⁶-benzoyl-9- $\{3'-bromo-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-\beta-D-xylofuranosyl<math>\}$ adenine (53). As described in *Exper.* 49, with 0.28 g (0.17 mmol) of 48 and 0.084 g (0.15 mmol) of 16, 22 h; prep. TLC gave 0.256 g (77%) of 53. UV (MeOH): 279 (4.75). ¹H-NMR (CDCl₃): 9.10 (m, 3 H, NH); 8.73–8.53 (m, 3 H, H–C(8)); 8.30–8.05 (m, 3 H, H–C(2)); 7.98 (br. s, 6 arom. H); 7.57–6.94 (m, 27 arom. H); 6.74 (d, 2 H, o to MeO); 6.31–6.10 (m, 2 H, H–C(1')); 5.93 (m, 1 H, H–C(1')); 3.72 (s, MeO); 0.90–0.75 (m, 27 H, t-Bu); 0.14 to -0.06 (m, 18 H, MeSi). Anal. calc. for C₁₀₁H₁₁₀Br Cl₄N₁₅O₁₉P₂Si₃ (2216.1): C 55.20, H 5.00, N 9.48; found: C 54.97, H 5.10, N 8.98.

51. N^{6} -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-9-[3'-bromo-3'-deoxy-2'-O-(monomethoxytrityl)- β -D-xylofuranosyl]adenine (**54**). As described in Exper. 49, with 0.28 g (0.17 mmol) of **48** and 0.106 g (0.15 mmol) of **19**, 20 h; prep. TLC gave 0.266 g (75%) of **54**. Amorphous powder. UV (MeOH): 228 (sh, 4.92), 260 (sh, 4.58), 279 (4.76). ¹H-NMR (CDCl₃): 9.03 (m, 3 H, NH); 8.83 (s, 1 H, H-C(8)); 8.57 (m, 2 H, H-C(8)); 8.32-7.97 (m, 9 H, H-C(2), arom. H); 7.53-6.90 (m, 39 arom. H); 6.76 (d, 4 H, o to MeO); 6.52 (m, 1 H, H-C(1')); 6.19 (m, 2 H, H-C(1')); 3.73 (s, 1 MeO); 3.69 (s, 1 MeO); 0.88-0.76 (m, 18 H, t-Bu); 0.09 to -0.05 (m, 12 H, MeSi). Anal. calc. for C₁₁₅H₁₁₂BrCl₄N₁₅O₂₀P₂Si₂ (2364.1): C 58.43, H 4.78, N 8.89; found: C 58.04, H 4.88, N 8.80.

52. N^{6} -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-N⁶-benzoyl-9-{2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-iodo- β -D-xylofuranosyl}adenine (55). As described in *Exper.* 47, with 0.06 g (0.1 mmol) of 27, 0.17 g (0.1 mmol) of 48, 0.05 ml (0.6 mmol) of *N*-methylimidazole, 0.06 g (0.2 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride, and pyridine (2 ml), 22 h; workup with CHCl₃ (50 ml) and H₂O (3 × 50 ml); column chromatography (silica gel, CHCl₃/MeOH 99:1) gave 0.170 g (75%) of 55. Colorless solid. UV (MeOH): 227 (sh, 4.82), 260 (sh, 4.54), 279 (4.75). ¹H-NMR (CDCl₃): 9.13–8.98 (m, 3 H, NH); 8.73 (s, 1 H, H–C(8)); 8.60 (s, 1 H, H–C(8)); 8.55 (s, 1 H, H–C(8)); 8.32–8.03 (m, 3 H, H–C(2)); 8.01–7.96 (m, 6 arom. H); 7.60–7.45 (m, 9 arom. H); 7.35–6.90 (m, 18 arom. H); 6.75 (d, 2 H, o to MeO); 6.22 (m, 2 H, H–C(1')); 5.86 (m, 1 H, H–C(1')); 3.73 (s, MeO); 0.90–0.78 (m, 27 H, t-Bu); 0.13 to -0.06 (m, 18 H, MeSi). Anal. calc. for C₁₀₁H₁₁₀Cl₄IN₁₅O₁₉P₂Si₃ (2263.1): C 54.05, H 4.90, N 9.28; found: C 53.97, H 5.16, N 8.87.

53. N⁶-Benzoyl-3'-O-[(tert-butyl) dimethylsilyl]-5'-O-(monomethoxytrityl) adenylyl- {2'- {O^P-[2-(4-nitrophenyl)ethyl]} \rightarrow 5' }-N⁶-benzoyl-3'-O-[(tert-butyl) dimethylsilyl] adenylyl- {2'- {O^P[2-(4-nitrophenyl)ethyl]} \rightarrow 5' }-N⁶-benzoyl-9 {2'-O-[(tert-butyl) dimethylsilyl]-3'-deoxy-3'-fluoro- β -D-xylofuranosyl } adenine (56). As described in *Exper.* 47, with 0.33 g (0.185 mmol) of 49, 0.073 g (0.15 mmol) of 33, pyridine (3 ml), 0.09 ml (1.12 mmol) of *N*-methylimidazole, and 0.112 g (0.37 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride, overnight; workup with CHCl₂ (20 ml) and H₂O (3 × 20 ml); column chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 97:3) followed by prep. TLC (silica gel, CHCl₃): 9.11–9.17 (*m*, 3 H, NH); 8.56–8.73 (*m*, 3 H, H–C(8)); 7.94–8.24 (*m*, 13 H, H–C(2), arom. H); 7.10–7.54 (*m*, 25 arom. H); 6.75 (*d*, 2 H, *o* to MeO); 6.04–6.20 (*m*, 3 H, H–C(1')); 3.70 (2, MeO); 0.86 (br. s, 27 H, t-Bu); 0.08 (br. s, 18 H, MeSi). Anal. cale. for C₁₀₅H₁₂₀FN₁₇O₂₃P₂Si₃·0.3 CHCl₃ (2184.2): C 57.50, H 5.53, N 10.86; found: C 57.65, H 5.38, N 10.75.

54. N⁶-Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}-5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-{O^P-[2-(4-nitrophenyl)ethyl]}-5'}-N⁶-benzoyl-9-{3'-azido-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy- β -D-xylofuranosyl}adenine (57). As described in *Exper.* 53, with 0.33 g (0.185 mmol) of **49** and 0.077 g (0.15 mmol) of **36**; column chromatography (silica gel, CHCl₃, then CHCl₃/MeOH 97:3) and prep. TLC (CHCl₃/MeOH 96:4) gave 0.22 g (67%) of **57** as solid foam, slightly contaminated by a trace of **49**. UV (MeOH): 276 (4.86). IR (KBr): 2100 (N₃). ¹H-NMR (CDCl₃): 9.15–9.20 (m, 3 H, NH, H–C(8)); 8.58–8.72 (m, 3 H, H–C(2)); 7.92–8.24 (m, 13 arom. H); 7.09–7.55 (m, 25 arom. H); 6.75 (d, 2 H, o to MeO); 6.20 (m, 1 H, H–C(1')); 5.90 (m, 2 H, H–C(1')); 3.72 (s, MeO); 0.86 (m, 27 H, *t*-Bu); 0.06 (m, 18 H, MeSi). Anal. calc. for C₁₀₅H₁₂₀N₂₀O₂₃Si₃P₂ (2176.4): C 57.95, H 5.56, N 12.87; found: C 57.42, H 5.48, N 12.60.

55. N^6 -Benzoyl-3'-O-[(tert-butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)adenylyl-{2'-[O^P-(2,5-dichloro-phenyl)] \rightarrow 5'}-N⁶-benzoyl-3'-O-[(tert-butyl)dimethylsilyl]adenylyl-{2'-[O^P-(2,5-dichlorophenyl)] \rightarrow 5'}-2',3'-anhydro-N⁶-benzoyladenosine (58). As described in *Exper.* 47, with 0.083 g (0.23 mmol) of 37, 0.4 g (0.23 mmol) of 48, 0.11 ml (1.4 mmol) of *N*-methylimidazole, 0.142 g (0.47 mmol) of 2,4,6-triisopropylbenzenesulfonyl chloride,

and pyridine (4 ml), 23 h; after evaporation, and coevaporation with toluene (10 ml), workup with CHCl₃ (50 ml) and H₂O (2 × 50 ml); column chromatography (silica gel, CHCl₃/MeOH 99:1) and subsequent prep. TLC (CHCl₃/MeOH 49:1) gave 0.35 g (76%) of **58**. Solid foam. UV (MeOH): 224 (sh, 4.84), 260 (sh, 4.56), 280 (4.76). ¹H-NMR (CDCl₃): 9.25–9.01 (*m*, 3 H, NH); 8.69–8.53 (*m*, 3 H, H–C(8)); 8.23–8.11 (*m*, 3 H, H–C(2)); 8.01–7.96 (*m*, 6 arom. H); 7.57–6.95 (*m*, 27 arom. H); 6.76 (*d*, 2 H, *o* to MeO); 6.31 (*m*, 1 H, H–C(1')); 6.23–6.04 (*m*, 2 H, H–C(1')); 3.72 (*s*, MeO); 0.85–0.75 (*m*, 18 H, *t*-Bu); 0.07 to -0.05 (*m*, 12 H, MeSi). Anal. calc. for C₉₅H₉₅Cl₄N₁₅O₁₉P₂Si₂ (2010.8): C 56.74, H 4.76, N 10.45; found: C 56.14, H 4.88, N 10.24.

56. Adenylyl- $(2' \rightarrow 5')$ -adenylyl- $(2' \rightarrow 5')$ -2',3'-anhydroadenosine (ammonium salt; **59**). 56.1. A soln. of 40 mg (20 µM) of **58** in dioxane (3 ml) was diluted with conc. NH₃ (17 ml) and kept for 3 days at r.t. After evaporation and coevaporation with pyridine (3 × 5 ml), the residue was diluted with 1M Bu₄NH in THF (20 ml) and again kept for 3 days at r.t. Evaporation and coevaporation with toluene gave a solid which was stirred at r.t. for 17 h in 80% AcOH (25 ml). After another evaporation and coevaporation with H₂O (3 × 10 ml), the residue was purified by *DEAE-Sephadex* column chromatography (linear gradient of 0–0.3M Et₃NHHCO₃) the trimer **59** being eluted with 0.165M Et₃NHHCO₃. Evaporation and several coevaporations with H₂O yielded 520 *OD* (78%) of **59** (triethylammonium salt). This material was transformed into the ammonium salt by paper chromatography using i-PrOH/conc. NH₃/H₂O 55:10:35. Elution with 1% NH₃ soln. and lyophilization yielded 447 *OD* (67%) of **59** ·2NH₃ as amorphous powder. TLC (cellulose; i-PrOH/conc. NH₃/H₂O 55:10:35): R_1 0.41, UV (H₂O): 258; hypochromicity: 20.6%. ¹H-NMR (D₂O): 8.04, 7.96, 7.93 (3s, 3 H, H–C(8)); 7.70, 7.67, 7.56 (3s, 3 H, H–C(2)); 5.95 (s, 1 H, H–C(1')); 5.88 (d, J = 3.4, H–C(1')); 5.57 (s, H–C(1')).

56.2. A soln. of 21.7 mg (10 μ M) of **52** in 0.5N DBU in dry pyridine (6.6 ml) was stirred at r.t. for 24 h. The mixture was neutralized with 1M AcOH in pyridine (3.3 ml) and then evaporated. The residue was dissolved in conc. NH₃ (5 ml) and dioxane (2 ml) and stirred at r.t. for 2 days. After evaporation and coevaporation with dry pyridine (3 × 5 ml), the residue was treated with 1M Bu₄NF in THF (8 ml) for 3 days at r.t. with stirring. Evaporation and coevaporation with toluene (2 × 10 ml) gave solid residue coevaporation with toluene (2 × 10 ml) gave a solid residue which was treated with 80% AcOH (8 ml) at r.t. for 16 h. The mixture was again evaporated and several times coevaporated with H₂O (5 × 5 ml). The residue was dissolved in H₂O (20 ml), extracted with CHCl₃ (2 × 20 ml), and the aq. phase separated by *DEAE-Sephadex-A-25* column chromatography (H₂O (500 ml), then linear gradient of 0–0.3M Et₃NHHCO₃), the product being eluted with 0.165M Et₃NHHCO₃. Evaporation, several coevaporations with H₂O, and final lyophilization from H₂O (10 ml) yielded 273 *OD* (91%) of **59** (triethylammonium salt). Amorphous powder. The product was chromatographically and spectrophotometrically identical with the preceding material.

57. Adenylyl- $(2' \rightarrow 5')$ -adenylyl- $(2' \rightarrow 5')$ -9-(3'-chloro-3'-deoxy- β -D-xylofuranosyl)adenine (triethylammonium salt; **60**). A soln. of 35 mg (15 μ M) of **51** in dioxane (25 ml) was triturated with conc. NH₃ (7.5 ml) at r.t. for 2 days. The mixture was evaporated and coevaporated with pyridine and THF and the residue treated with 1M Bu₄NF in THF (12 ml) for 48 h at r.t. After evaporation, the mixture was kept in 80% ACOH (3 ml) at r.t. for 48 h. The solvent was evaporated and the residue dissolved in H₂O (20 ml) and extracted with CHCl₃ (20 ml). Purification was performed on a *DEAE-Sephadex-A-25* column (linear gradient of 0–0.3M Et₃NHHCO₃), the product being eluted with 0.156M Et₃NHHCO₃. Evaporation and final lyophilization from H₂O gave 398 *OD* (87%) of **60**. Amorphous powder. UV (H₂O): 258; hypochromicity: 18.7%. ¹H-NMR (D₂O): 8.05 (*s*, 1 H, H-C(8)); 7.98 (*s*, 2 H, H-C(8)); 7.84 (*s*, 1 H, H-C(2)); 7.79 (*s*, 1 H, H-C(2)); 7.64 (*s*, 1 H, H-C(2)); 5.94 (*d*, *J* = 3.97, H-C(1')); 5.79 (*d*, *J* = 2.74, H-C(1')); 5.65 (*d*, *J* = 4.9, H-C(1')).

58. Adenylyl- $(2' \rightarrow 5')$ adenylyl- $(2' \rightarrow 5')$ -9-(3'-deoxy-3'-fluoro- β -D-xylofuranosyl) adenine (ammonium salt; 61). A soln. of 42 mg (20 μ M) of 56 in 0.5M DBU in pyridine (16 ml) was stirred at r.t. for 24 h, then neutralized with 1M AcOH in pyridine (8 ml), evaporated, and coevaporated with pyridine. The oily residue in 1M Bu₄NF in THF (10 ml) was stirred for 48 h. After evaporation, treatment with conc. NH₃ (20 ml) for 48 h at r.t., evaporation, treatment with 80% AcOH (10 ml) at r.t. for 20 h, and evaporation, the residue in H₂O was chromatographed on a *DEAE-Sephadex-A-25* column (H₂O (500 ml), then linear gradient of 0-0.3M Et₃NHHCO₃). The main fraction was evaporated and coevaporated with H₂O (3 × 10 ml): 527 *OD* (80%) of 61 (triethylammonium salt) as solid. Further purification by paper chromatography in i-PrOH/conc. NH₃/H₂O 6:1:3, elution with H₂O, and lyophilization yielded the ammonium salt 61 as amorphous powder. UV (H₂O): 258; hypochromicity: 8.7%. ¹H-NMR (D₂O): 8.14 (s, 1 H, H-C(8)); 8.11 (s, 1 H, H-C(8)); 8.03 (s, 1 H, H-C(8)); 8.00 (s, 1 H, H-C(2)); 7.97 (s, 1 H, H-C(2)); 7.78 (s, 1 H, H-C(2)); 6.05 (d, J = 4.0, H-C(1')); 5.96 (d, J = 3.67, H-C(1')); 5.80 (d, J = 1.8, H-C(1')).

59. Adenylyl- $(2' \rightarrow 5')$ -adenylyl- $(2' \rightarrow 5')$ -9-(3'-azido-3'-deoxy- β -D-xylofuranosyl)adenine (ammonium salt; 62). Analogous to Exper. 58, 30 mg (14 μ M) of 57 were treated subsequently with DBU, Bu₄NF, conc. NH₃, and AcOH. *DEAE-Sephadex-A-25* chromatography in the usual manner gave 367 OD (86%) of **62** (triethylammonium salt). Conversion into the ammonium salt was performed by paper chromatography in i-PrOH/conc. NH₃H₂O 6:1:3; elution with 1% NH₃, and lyophilization: colorless powder. TLC (cellulose; i-PrOH/NH₃/H₂O 6:1:3): R_f 0.40. UV (H₂O): 258; hypochromicity: 18%. ¹H-NMR (D₂O): 7.96 (*s*, 1 H, H–C(8)); 7.88 (*s*, 2 H, H–C(8)); 7.73 (*s*, 1 H, H–C(2)); 7.67 (*s*, 1 H, H–C(2)); 7.54 (*s*, 1 H, H–C(2)); 5.86 (*d*, J = 3.97, H–C(1')); 5.70 (*d*, J = 2.74, H–C(1')); 5.58 (*d*, J = 5.5, H–C(1')).

60. Adenylyl- $(2' \rightarrow 5')$ -adenylyl- $(2' \rightarrow 5')$ -9-(3'-deoxy-β-D-glycero-pent-3'-enofuranosyl)adenine (triethylammonium salt; **63**) and Adenylyl- $(2' \rightarrow 5')$ -adenylyl- $(2' \rightarrow 5')$ -2',3'-anhydroadenosine (triethylammonium salt; **59**). A soln. of 22 mg (10 µM) of **52** in 0.5M DBU in dry pyridine (6.6 ml) was stirred at r.t. for 24 h, neutralized with 1M AcOH in pyridine (3.3 ml), and evaporated. The residue was treated with conc. NH₃ (5 ml) and dioxane (2 ml) for 28 h. After evaporation and coevaporation with pyridine (2 × 5 ml), the residue in 1M Bu₄NF in THF (8 ml) was stirred at r.t. for 48 h, the mixture again evaporated, the residue treated in 80% AcOH (8 ml) for 16 h, and the AcOH removed by evaporation and several coevaporations with H₂O (5 × 10 ml). The residue was disolved in H₂O (20 ml) and extracted with CHCl₃ (2 × 20 ml) and the aq. phase separated by *DEAE-Sephadex-A-25* column chromatography (H₂O (1), then linear gradient of 0.03M Et₃NHHCO₃). The first product was eluted with 0.15M Et₃NHHCO₃, giving 195 *OD* (54%) of **63** (triethylammonium salt). ¹H-NMR (D₂O): 7.96 (s, 1 H, H–C(8)); 7.91 (s, 1 H, H–C(8)); 7.71 (s, 1 H, H–C(2)); 7.57 (s, 1 H, H–C(2)).

REFERENCES

- [1] Part XXXIII: R. Charubala, W. Pfleiderer, Heterocycles 1990, 30, 1141.
- [2] P. Lengyel, in 'Interferon 3', Ed. I. Gresser, Academic Press, New York, 1981, p. 77.
- [3] P.F. Torrence, Mol. Aspects Med. 1982, 5, 129.
- [4] G.C. Sen, Pharmacol. Ther. 1984, 24, 235.
- [5] M. Knight, P.J. Cayley, H.T. Serafinowska, D.G. Norman, C.S. Gilbert, R.E. Brown, I.M. Kerr, Nature (London) 1980, 288, 189.
- [6] C. Baglioni, S. B. d'Alessandro, T. W. Nilsen, J. A. J. den Hartog, R. Crea, J. H. van Boom, J. Biol. Chem. 1981, 256, 3253.
- [7] M. Kwiatkowski, C. Gioeli, J. B. Chattopadhyaya, B. Öberg, A. F. Drake, Chem. Scr. 1982, 19, 49.
- [8] T. L. Drocourt, C. W. Dieffenbach, P.O. P. Ts'O, J. Justesen, M. N. Thang, Nucleic Acids Res. 1982, 10, 2163.
- [9] M. C. Haugh, P. J. Cayley, H. T. Serafinowska, D. G. Norman, C. B. Reese, I. M. Kerr, Eur. J. Biochem. 1983, 132, 77.
- [10] H. Sawai, J. Imai, K. Lesiak, M.I. Johnston, P.F. Torrence, J. Biol. Chem. 1983, 258, 1671.
- [11] Y. Devash, A. Gera, D. H. Willis, M. Reichman, W. Pfleiderer, R. Charubala, I. Sela, R.J. Suhadolnik, J. Biol. Chem. 1984, 259, 3482.
- [12] K. Kariko, R.W. Sobol, L. Suhadolnik, S.W. Li, N.L. Reichenbach, R.J. Suhadolnik, R. Charubala, W. Pfleiderer, *Biochemistry* 1987, 26, 7127.
- [13] K. Kariko, S. W. Li, R. W. Sobol, R. J. Suhadolnik, R. Charubala, W. Pfleiderer, Biochemistry 1987, 26, 7136.
- [14] A.V. Itkes, M.Ya. Karpeisky, O.N. Kartasheva, S.N. Mikhailov, G.P. Moiseyew, W. Pfleiderer, R. Charubala, G.I. Yakovlev, FEBS Lett. 1988, 236, 325.
- [15] R. Charubala, E. Uhlmann, F. Himmelsbach, W. Pfleiderer, Helv. Chim. Acta 1987, 70, 2028.
- [16] P.F. Torrence, D. Brozda, D. Alster, R. Charubala, W. Pfleiderer, J. Biol. Chem. 1988, 263, 1131.
- [17] P. Herdewijn, R. Charubala, W. Pfleiderer, Helv. Chim. Acta 1989, 72, 1729.
- [18] P. Herdewijn, R. Charubala, E. De Clercq, W. Pfleiderer, Helv. Chim. Acta 1989, 72, 1739.
- [19] M.J. Robins, Y. Fouron, R. Mengel, J. Org. Chem. 1974, 39, 1564.
- [20] A.F. Russel, S. Greenberg, J.G. Moffatt, J. Am. Chem. Soc. 1973, 95, 4025.
- [21] R. Mengel, H. Wiedner, Chem. Ber. 1976, 109, 1395.
- [22] M.J. Robins, Y. Fouron, R. Mengel, J. Org. Chem. 1974, 39, 1564.
- [23] F. W. Lichtenthaler, K. Kitahana, K. Strobel, J. Chem. Soc., Chem. Commun. 1974, 860.
- [24] G.S. Ti, B.L. Gaffney, R.A. Jones, J. Am. Chem. Soc. 1982, 104, 1316.
- [25] F. Himmelsbach, B.S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59.
- [26] D. Flockerzi, G. Silber, R. Charubala, W. Schlosser, R.S. Varma, F. Creegan, W. Pfleiderer, *Liebigs Ann. Chem.* 1981, 1568.
- [27] K.K. Ogilvie, S.L. Beaucage, A.L. Schifman, N.Y. Theriault, K.L. Sadana, Can. J. Chem. 1978, 56, 2768.